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Abstract: A novel framework is proposed to incrementally collect landmark-
based graph memory and use the collected memory for image goal navigation.
Given a target image to search, an embodied robot utilizes semantic memory to
find the target in an unknown environment. In this paper, we present a topologi-
cal semantic graph memory (TSGM), which consists of (1) a graph builder that
takes the observed RGB-D image to construct a topological semantic graph, (2) a
cross graph mixer module that takes the collected nodes to get contextual infor-
mation, and (3) a memory decoder that takes the contextual memory as an input
to find an action to the target. On the task of an image goal navigation, TSGM
significantly outperforms competitive baselines by +5.0-9.0% on the success rate
and +7.0-23.5% on SPL, which means that the TSGM finds efficient paths. Addi-
tionally, we demonstrate our method on a mobile robot in real-world image goal
scenarios.

Keywords: Landmark-Based Navigation, Incremental Topological Memory

1 Introduction

Navigation with rich visual observations has been a critical issue in a variety of embodied agent
tasks, such as exploration, image goal navigation, and object goal navigation [1–16]. A crucial in-
gredient for successful visual navigation is to construct a memory, which can represent the structure
of the environment along with compact visual features for representing high-dimensional visual in-
puts. A metric-map memory [5, 17] created with SLAM, and a graph memory [8, 9, 18–20] with
nodes and edges are the two standard memory construction approaches for navigation algorithms.
Even though navigation systems that use metric maps produce powerful results with exact localiza-
tion and mapping, it is not practical because the navigation agent is susceptible to sensory noises.
The topological map, which represents geometric properties and spatial relations of places in the
form of a graph, is proposed to construct a map without accurate mapping. Previous visual naviga-
tion methods [9, 18] with topological map exploit image features as nodes and edges connecting the
nodes in proximity. Since a node indicates a location, the robot’s position can be estimated by the
nodes in the topological map. Therefore, the graph can be used to navigate successfully even in a
real noisy environment.

Unfortunately, using semantic information in topological graph memory presents several difficul-
ties. The first challenge is to incorporate landmarks into a topological graph. As demonstrated by
studies [21–23] that show animals navigate utilizing contextual cues from landmarks, the problem
of incorporating landmarks, such as object compositions, is a critical issue in visual navigation. A
recent research [15] addresses the problem by making an object graph, which connects objects in
a field of view of a directional camera to leverage object features. Although it guides an agent to
effective action to discover the target utilizing object relationships, it often misses 3D object con-
text information since it only connects objects observed from the same viewpoint. Imagine a goal
is given to find a cooking pot, and you know that the cooking pot is usually kept adjacent to an
oven. If the oven is nearby but not visible, the agent may miss this crucial information and pick an
inefficient path. The more difficult problem is inferring contextual information from objects using
geometrically arranged landmarks. There are various advantages to obtaining contextual features
from topological graphs. By defining an object through neighboring objects, the contextual repre-
sentation helps to eliminate the ambiguity of similar but different objects. As shown in Figure 1(a),
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Figure 1: Importance of semantic contextual information. (a) When two similar items, e.g., cups,
are in different locations, they can be identified individually. (b) A kitchen can be recognized when
refrigerator, oven, and dining table are detected.

by describing cups in terms of their neighboring objects, it is possible to distinguish two similar
cups. For example, a cup in the kitchen can be perceived as one next to a chair and snack box, while
a cup in the bathroom can be shown as one that is near to a toothbrush and washstand. Moreover, a
place can be better described through objects. A kitchen, for example, can be defined by the presence
of a refrigerator, oven, and dining table (see Figure 1(b)).

To this end, this paper addresses the challenges described above using topological semantic graph
memory (TSGM), which has two types of nodes: image nodes and object nodes. Image nodes rep-
resent different positions that include image representations, while each object node represents a
unique object with its visual representation regardless of viewpoint. If a previously undiscovered
image node is identified, it is connected to the previously visited image node, producing a spa-
tially meaningful graph. For each image input, objects are detected using MaskRCNN [24] and then
connected to image nodes where the object can be seen. A cross graph mixer, a learnable message-
passing network that exchanges object and image information, is then used to make the memory
contextual. Using this contextual memory, the agent determines the best strategy for finding the
goal. We applied our proposed method to image goal navigation in the Gibson [25] to validate our
method. As a result, the proposed method significantly outperforms competitive baselines by +5.0-
9.0% on the success rate and +7.0-23.5% on SPL, which means that the TSGM finds efficient paths.
On a mobile jackal robot, we demonstrate our method in a real-world environment. The experiment
is carried out using episodes where the goal location is not visible and is 5 to 10m away. Despite that
the episodes are challenging for image goal navigation, TSGM demonstrates successful navigation.

2 Related Work

There has been a lot of research using memory for visual navigation. There are three types of mem-
ory formation methods: implicit memory, metric memory, and topological memory.

Implicit memory. Using a recurrent neural network (RNN) as a policy network is a simple method
to make an implicit memory [26]. TargetDriven [26] has a vanilla RL policy with a CNN backbone
followed by an LSTM which is implicit memory. Since RNN has difficulty backpropagating for a
long sequence, RNN is replaced with an explicit memory structure [2, 5, 8, 9, 17, 20].

Metric memory. Active Neural SLAM [17] has a hierarchical structure to explore an environment:
global and local policy. The global policy constructs a top-down 2D map and estimates a global goal.
It consists of a neural network for flexible output on the input modalities. Given the global goal
from the global policy module, a local policy module plans a path to the goal using the simple local
navigation algorithm.Exp4nav [5] tackles the exploration problem for navigation. It builds a global
metric map, combining egocentric metric maps. Then, to estimate the action, it embeds images with
CNN, and a recurrent policy takes the embedding of current observation and the target to output an
action.

Topological memory. In [2], LSTM is a policy network that finds the currently located node and
derives an action when a topological map is provided. The goal of NeuralPlanner [20] is primarily to
explore the environment and maximize coverage. To this end, a topological map is generated from
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Figure 2: Overview of the proposed method. TSGM has a spatially meaningful structure that is
generated and updated online. An image node Vim is represented by a blue circle, and an object node
Vob is represented by a pink triangle. The current observation xt is shown in green, while the goal xg
is highlighted in red. A cross graph mixer module is used to update the constructed graph memory to
encode the context of features. Then, the attention module chooses the updated memory by querying
the current observation and target node. The action policy network determines the action at based
on the selected memory. Note that the node position is only used for visualization purposes.

an exploratory policy during the rollout. Then, a pretrained neural planner calculates the path to
the node most similar to the target image. Semi-parametric topological memory (SPTM) [9] forms
a topological memory through exploration before training an agent. Then, an agent navigates to
the destination based on the topological memory using the Dijkstra algorithm that plans a path to
reach the waypoint. Scene memory transformer (SMT) [8] stacks all the visual features of the past
observations as a navigation memory. It uses transformer network [6] to process this memory in the
context of the current and target observations. In other words, the authors completely replaced the
RNN with an attention mechanism, which shows good performance in long-term tasks. Visual graph
memory (VGM) [18] constructs a topological visual memory to navigate an environment while not
utilizing the landmark information of the scene. No RL no simulator (NRNS) [27] uses models
trained using image input without interaction with the simulator. It creates a node for an unexplored
area and finds the goal by estimating the geodesic distance to the goal.

Our method builds upon prior topological memory methods to handle the problem of creating and
exploiting the object-based semantic graph to find the most efficient path. Once placed in a new
environment, our method explores while incrementally constructing a topological graph, inspired
by prior work [8, 18, 27]. In contrast to these previous methods, our method employs spatially
meaningful landmarks without using exact positions.

3 TSGM: Topological Semantic Graph Memory

3.1 Problem Statement

We consider the problem of goal-directed exploration for efficient navigation. Given a current ob-
servation and a target image to search, an embodied robot aims to find the target (see Figure 2). The
current observation contains RGB-D sensory input xt and detected objects {z1, ..., zK} ∈ zt.

3.2 Graph Memory Construction

Let us consider an agent equipped with an RGB-D camera that was dropped into a novel environ-
ment that it has never been in before. We want to build and exploit a graph memory that enables
this agent to find the goal in a new environment efficiently. To this end, a semantically structured
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graph memory, named topological semantic graph memory (TSGM), is built online while an agent
traverses the new environment. For example, as shown in Figure 2, when a new node (green circle) is
found, the new node is connected to the previous image node (the blue circle connected to the green
circle), and the object nodes found at the new node (the green triangles). Since the graph is built
with landmarks, recalling the landmarks the agent has seen before will help the agent to discover
efficient paths. The TSGM contains two types of nodes and edges, i.e., G = {Vim,Vob, Eim, Ec}
with image nodes Vim = {xi}Ni=1 and its edges Eim with the affinity matrix Aim ∈ RN×N , object
nodes Vob = {zi}Mi=1 where zi ∈ R1×D, and edges connecting image and object nodes Ec with the
affinity matrix Ac ∈ RN×M . N is the number of image nodes, M is the number of object nodes,
and D is the dimension of the object representation. The graph expands continuously as the agent
explores the environment. The algorithm for constructing TSGM is provided in Appendix B.

Object graph construction. Objects are retrieved using MaskRCNN [24] and added to the graph
memory as nodes. When the object is already in memory, the object node is updated with a node with
a higher object detection score. If it is not determined that the object is the same, a new object node
(zk) is added to the memory, connecting with the corresponding current image node (xt) using the
affinity matrix (Ac). To connect objects in proximity in the graph memory, we calculate the affinity
matrix for object nodes to be connected to objects in the neighbors of the current image node using
the image affinity and image-object affinity. Here, since we want a single object node for an object,
the trained object encoder using Supervised contrastive learning [28] learns whether the objects are
the same object even when the images are shot from various points of view.

Image graph construction. To construct an image graph, a pretrained similarity encoder [29]
learns image similarity in an unsupervised manner and is then used to determine whether or not
the node is already in memory. If an observed node is new, i.e., the node feature is not similar
to the existing memory, it is added to the graph memory; otherwise, it is utilized to update the
corresponding memory node. While connecting image nodes, a new technique based on objects is
utilized, assuming that the likelihood of being at the same place is significantly low if there are
few co-visible objects between two image nodes. Therefore, the similarity between the object nodes
collected at the current location and the object graph nodes is calculated. We consider two image
nodes to represent different locations when there are no similar items between them. If the similarity
is low, the observed image node is added to memory; otherwise, the image node is updated to the
most recent image representation. When it turns out that the image node is new, it is connected to
the previous image node (xl), making the image affinity matrix (Aim) between xl and xt connected.

3.3 Cross Graph Mixer

The cross graph mixer is developed from MPNNs [30] to encode scene contexts by combining in-
formation from the image and object graphs. The upper row of Figure 3 depicts the image graph,
while the lower row represents the object graph. The message passing phase runs for L steps and is
defined of message functions M l and vertex update functions U l, where l ∈ {1, ..., L}. The mes-
sage function M l is composed of two functions, the self-update function (Sl) and the cross-update
function (Cl). To begin, image and object nodes self-update to obtain contextual representations of
nearby locations or objects, respectively:

m̂i
l

v =
∑

w∈Ni(v)

Sli(hi
l
w, Aim, g), m̂o

l
v =

∑
k∈No(v)

Slo(ho
l
k, Aob, g), (1)

where Ni(v) and No(v) denote the image/object neighbors of the vth node. The node features h
are concatenated with the goal feature g, and it is embedded into a feature using two-layered neural
networks. Then, the self-update message function S makes m̂i

l

v and m̂olv by aggregating connected
nodes with the message passing method, which is illustrated in the left column of Figure 3. After
self-update, each graph exchanges information with the others to make a complete the messages,

milv =
∑

k∈No(v)

Cli(m̂i
l

v, m̂o
l
k, Ac), mo

l
v =

∑
w∈Ni(v)

Clo(m̂o
l
v, m̂i

l

w, Ac), (2)

where Ci and Co are cross updating functions that produce milv and molv , which are cross-updated
messages. The cross-update module’s central concept is that images are updated through connected
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Figure 3: Cross graph mixer. The upper row shows the image graph update while the lower row
shows the object graph update.

objects, and objects are updated using connected images. To cross-update the graphs, the self-
updated image/object features aggregate the connected object/image node features. Then, the update
function U transfers messages from object nodes to image nodes and vice versa,

hil+1
v = U li (hi

l
v,mi

l
v), ho

l+1
v = U lo(ho

l
v,mo

l
v). (3)

where U is a two-layered neural network that maps information of an object/image to the connected
objects/images. The image-object update iterates for L steps to create semantic contextual node
features. After L steps of the image-object update iterations, the cross-mixed memory for image
graph mi and object graph mo are generated for each node. The details of the module structure are
described in the Appendix C.

3.4 Memory Attention Module

TSGM is composed of visited image nodes and object nodes that have been observed. For this,
an attention network is used to discover the node closest to the goal among the memory. Since
this module utilizes attention, interpolation between visited nodes enables goal features to be ex-
tracted from unexplored nodes. Additionally, to find the relative path, the current node is better
to be searched. The goal feature xg is given as a query q when extracting a memory-conditioned
goal feature, Cig , Cog , and the current observation feature xt is given as an input when selecting
the memory-conditioned current feature, Cit, Cot. Using the decoder module of the transformer
network [6], current contextual feature Cit, Cot and goal context feature Cig , Cog are collected,

Ci = σ
( (Wqq)(Wk{mi1, ...,min}T )√

d

)
(Wvq),Co = σ

( (Wqq)(Wk{mo1, ...,mon}T )√
d

)
(Wvq),

(4)

where Wv , Wq , and Wk are matrix parameters and the set {mi1, ...,miN} is the image memory, the
set {mo1, ...,moM} is the object memory, and σ is a softmax function.

3.5 Action Policy Network

Given the contextual feature for goal and current nodes, the action policy network finds an action to
reach the goal. For tth time step, we encode the sequential information, hta = G(htc,h

t
g,h

t−1
a , at−1),

where G is a recurrent neural network and hta is a tth hidden state for action, and at−1 is the pre-
vious action of an agent. Then, the action at is sampled from the Categorical distribution, i.e. at ∼
Categorical(Whta + b), where W and b are matrix parameters.
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3.6 Optimization

Learning action. Proximal policy optimization (PPO) [31] is used to learn a policy for picture
goal navigation. The policy is trained to maximize the expected return, which is defined as the
total reward Eτ [R(st, at)] over time trajectories τ = (st, at)

H
t=1 of the policy’s time horizon H .

When an agent takes action at at state st, Lppo = −Et
[
∇θlogπθ(at|st)Ât

]
, where and Ât is an

estimator of the advantage function at time step t, and pitheta is a stochastic policy. We formulated
it as a negative log likelihood to the oracle action, Lact = −Eτ∼D

[∑Tτ
t=1 a

∗
t log(at|xt)

]
, where τ

= (xt, a
∗
t ) for t ∈ {1, 2, ..., Tτ}, and a∗t is the oracle action at time step t. Since PPO can better

estimate return after creating successful episodes, the policy is pretrained with imitation learning
and then finetuned with reinforcement learning.

Auxiliary metrics. Knowing when to stop is a significant issue since an episode is considered
successful if an agent calls the stop action upon seeing the goal. Fortunately, it is well known that
auxiliary metrics, such as a progress monitor and goal sensor, can assist an agent in determining
when to stop [32]. The progress monitor assesses progress based on the current observation and a
target to determine when to press the stop button, which is obtained by calculating the geodesic
distance between an agent and the goal. The goal sensor indicates how close the current position
is to the goal. If the target is within the success criteria for image goal navigation, the goal sensor
produces one. The progress monitor takes the current observation and a target as input and estimates
the progress, p̂t. The target sensor takes the same input of the progress monitor and estimates that
the current observation containing a target, ŝt. Then, two estimations, p̂t and ŝt, are optimized with
L2 loss, Laux = Eτ∼D

[∑Tτ
t=1 ||s∗t − ŝt||2 + ||p∗t − p̂t||2

]
, where s∗t and p∗t are the ground truths.

Since the auxiliary loss is simply added to the action loss, the final loss function for training an agent
with imitation learning is Lbc = Lact+λLaux, where λ is a balancing parameter. For reinforcement
learning, the combined loss Lrl = Lppo + λLaux, is used.

4 Experimental Evaluation

4.1 Baselines

We compare our method with baselines with various types of memory.RGBD + RL [26] has a
vanilla RL policy with a CNN backbone followed by an LSTM adapted from [26]. Active Neural
SLAM [17] has a metric memory for exploration. To adapt the algorithm to the image goal naviga-
tion, we set the output of the global policy to be the relative position to the target when the target is
detected using a pretrained target pose estimator. Exp4nav [5] tackles the exploration problem.To
finetune the image goal navigation task model, we change the coverage reward to the image goal
reward. Neural Planner [20] is a model adapted the method [20] for image goal navigation from
exploration task. SPTM [9] creates a topological graph, and then the Dijkstra algorithm then creates
a path to a waypoint. SMT [8] stacks all the visual features of the past observations and the pose
information as a navigation memory. VGM [18] builds a topological memory to navigate an envi-
ronment without using landmark information. NRNS [27] trained agent without interaction with the
simulator. In order to compare the method fairly, we adapted the method to use a panoramic camera.

4.2 Experiment Settings

We evaluate TSGM in the Gibson environment with a habitat simulator, which is photo-realistic.
For image observation, we used a panoramic image, the same setting with [18], inspired by the
human neuron not recognizing the heading for localizing [33]. The ground truth objects from the
Gibson dataset and detected objects from the detector are used for training. For testing, a de-
tector [24] pretrained with a COCO dataset is used. We use a discrete action space defined as
A = {go forward, turn left, turn right, stop}, which is a common choice for navigation
problems. The step size of the forward action is 0.25m, and the rotation angle is set to 10° in all
experiments. The reward function R is defined using the progress of an agent, using a geodesic dis-
tance between an agent and the target, and +10 is given when the agent reaches the goal. Further
implementation details of the proposed method are provided in Appendix A.
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Table 1: Comparison of TSGM with memory-based baselines on image goal navigation on Gibson.

Method Memory No Pose Object Easy Medium Hard Overall
Success SPL Success SPL Success SPL Success SPL

RGBD + RL [26] implicit 7 7 72.5 69.5 53.1 48.6 22.3 17.7 49.3 45.3
Active Neural SLAM [17] metric 7 7 74.2 20.5 68.4 22.9 29.9 11.0 57.5 18.1
Exp4nav [5] metric 7 7 70.2 61.8 60.6 52.4 46.9 38.5 59.2 50.9
SMT [8] graph 7 7 81.9 77.4 65.6 52.2 55.6 39.7 67.7 56.4
Neural Planner [20] graph 7 7 71.7 41.3 64.7 38.5 42.0 27.0 59.5 35.6
SPTM [9] graph 4 7 66.5 40.6 64.2 38.5 42.1 25.4 57.6 34.8
VGM [18] graph 4 7 86.1 79.6 81.2 68.2 60.9 45.6 76.1 64.5

TSGM (Ours) graph 4 4 91.1 83.5 82.0 68.1 70.3 50.0 81.1 67.2

Table 2: Comparison of TSGM with image goal navigation baselines on straight/curved episodes on
Gibson.

Path Type Method Easy Medium Hard Overall
Success SPL Success SPL Success SPL Success SPL

Straight
NRNS [27] 67.1 57.8 52.4 41.2 32.6 22.4 50.7 40.5
VGM [18] 81.0 54.4 82.0 69.9 67.3 54.4 76.7 59.6
TSGM (Ours) 94.4 92.1 92.6 84.3 70.3 62.8 85.7 79.7

Curved
NRNS [27] 31.7 13.0 29.0 13.6 19.2 10.4 26.6 12.3
VGM [18] 81.0 45.5 78.8 59.5 62.2 46.9 74.0 50.6
TSGM (Ours) 93.6 91.0 89.7 77.8 64.2 55.0 82.5 74.1

Evaluation metrics. We use Success and SPL (success rate over path length) to evaluate the naviga-
tion tasks. Success is calculated by dividing the total success number by the number of test episodes.
We set the success criterion as 1m to the goal, a common criterion for image goal navigation. SPL
multiplies the success rate and the ratio of the shortest path length and traveled path.

Episode settings. We divide test episodes into three difficulty levels for image goal navigation: easy,
medium, and hard. The difficulty is determined by the geodesic length of an episode. Following
[17, 18], we set the length as follows: easy (1.5 – 3m), medium (3 – 5m), and hard (5 – 10m).

4.3 Results

TSGM outperforms baselines. Table 1 shows the performance of our TSGM and relevant
memory-based baselines on test splits of the Gibson dataset. Our TSGM algorithm outperforms
the baseline methods in terms of Success and SPL @ 1m. TSGM improves upon the implicit mem-
ory model [26] across splits of Gibson by 31.8% on the success rate. Compared to the VGM [18],
our method improved by +5% on the success rate the 4.1% on SPL. To measure performance in
various situations, the test episodes are divided according to whether the path is curved or not in
Table 2. Our TSGM shows surprising performance improvement in both curved and straight situ-
ations. In particular, for an easy episode, the SPL increased quite a surprising amount, 45.5% to
91.0% (100%) for curved episodes and 54.4% to 92.1% (69.3%) for straight episodes compared to
the last state-of-the-art result of VGM [18], which can be seen that if an object existing at the target
position is present in the field of view, the agent can find the goal position very efficiently. In aver-
aged results in Table 2, TSGM outperforms competitive baselines by 8.5-9.0% on the success rate
and 20.2-23.5% improvement on SPL. In summary, TSGM significantly outperforms competitive
baselines by 5.0-9.0% on the success rate and 7.0-23.5% improvement on SPL.

TSGM finds efficient paths. We checked that the SPL, which indicates the efficiency of the path,
is improved a lot. To investigate how the object graph assists the agent in choosing efficient paths,
we visualized the paths in Figure 4. When an object graph is not provided, an agent passes the goal
without realizing it is a goal, while an agent with an object graph quickly understands that the goal
has been achieved and terminates the search (see Figure 4(a)). In Figure 4(b), the agent enters a
deadlock when the object graph is not provided. In the case of a TSGM with an object graph, on the
other hand, the goal is successfully found with a more efficient path.
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Figure 4: Visualization of path changes when object graph is not given. Our TSGM is compared
with the method that does not have the object graph. The red flag highlights the image goals. The
lines with an arrow represent trajectories of the agent with the color changes with time. (a) shows
that an inefficient path is created when the object graph is not given. (b) The agent is trapped in the
deadlock states without the object graph.

Figure 5: Visualization of the robot path on real environment. The color gradation represents the
flow of time. The blue arrow symbolizes the starting point, and the red flag indicates the destination.
An image node is represented by a blue circle, and an object node is represented by a pink triangle.

Table 3: Update rules.
Update Success SPL
No 0.533 0.393
Visual 0.578 0.446
Object 0.613 0.458
Cross 0.627 0.471

Cross update module is effective. As shown in Table 3, the ablation
study on the graph update was performed, where we only used imi-
tation learning results on hard episodes for the ablation experiments.
The object update version indicates the update is done only to the im-
age node to the object node, and the visual update version shows the
results when the update is the opposite. Using the semantic graph up-
date shows a 4.5% improvement in success rate and +5.3% on SPL.
Surprisingly, the updating object node with visual node shows better
results than updating graph with opposite direction, showing +8.0% on the success rate and +6.5%
on SPL compared to the No update version. Finally, the cross update shows the most powerful re-
sults, +9.4% on the success rate and +7.8% on SPL. The results indicate that cross updating improves
performance by making image and object features informative.

TSGM can handle the real noisy world. Figure 5 shows paths and topological semantic graphs
from navigation experiments using a Jackal robot. The episodes examined in the real world are
sampled from hard episodes with curves. Nonetheless, our agent demonstrated successful navigation
by stopping at the correct goal location. The supplementary video shows more paths, with the graph
being incrementally built over time.

5 Conclusion and Limitation

The proposed method explores while incrementally generating a semantic topological graph using
landmarks such as objects. The core idea of our method is derived from animal behavior, which
uses landmarks as a navigational cue. Contextual information is taken from the constructed graph
to discover an efficient path to the goal. We demonstrate that TSGM performs efficiently and ef-
fectively, with significant performance improvements, particularly in SPL. The proposed method is
demonstrated using a Jackal mobile robot to show its effectiveness for practical visual navigation in
the real-world.

While it is expected to be suitable for finding objects since object contexts are successfully trained
in TSGM, a limitation of the proposed method is that no experiments on object-goal navigation are
conducted, due to time constraint. We may adapt TSGM to object-goal navigation in the future.
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Appendices
Appendix A Training Details and Experimental Settings

Training process. The training process is as follows: 1. The agent builds a graph map, which can
be incrementally updated based on the observation. 2. Extract latent contextual representation from
memory generated from a graph map using the attention method. 3. Extract the action by putting the
attended memory, current observation, and prior action into the action policy function. 4. The action
is first optimized with imitation learning with oracle action, and then the agent learns more suited
for the environment through reinforcement learning.

Implementation details. Baselines and the proposed method, excluding the methods that do not
use training [27], are trained using imitation learning with 14,400 episodes, 200 episodes per scene
for 72 training scenes. Then, reinforcement learning is applied for 10M frames to fix erroneous
behaviors by interacting with simulation environments. The cross-update is carried out twice for both
graphs since we wanted to update nodes using updated nodes while utilizing the least computational
costs.

Figure 6: Clearpath Jackal

Real robot experiment settings. We implement TSGM on a
Clearpath Jackal platform for a real-world setting. Jackal is
equipped with a single Ricoh Theta V camera, a 360° RGB sensor.
Since this camera collects images with equirectangular projections,
the equirectangular image is converted into a panoramic image of
the 12 pinhole cameras having 30° FoV which is used for train-
ing. Since it was found that getting the exact panoramic depth is
challenging, depth was extracted from the pretrained depth estima-
tor, using the Omni-Depth [34] algorithm for the real-world experi-
ments. Omni-Depth [34] estimates depth from panoramic RGB im-
ages gathered from indoor datasets such as Matterport dataset [35].
We utilized the same test simulator environment for training and
testing the depth estimator since we assumed a very accurate depth
input was given. To control the Jackal, we use a PD controller.

Episode settings. Gibson dataset is divided into 72 train scenes
and 14 test scenes for image goal navigation. The test episodes in
the Gibson dataset are derived from 14 test scenes that do not over-
lap the training scene. The test episodes for Table 1 of the paper are
proposed in VGM [18]. The number of episodes for each difficulty
is 1,007, totaling 3,021 episodes. Since episodes with similar beginning and end points might be
chosen as duplicates if the scene is tiny, the number of test episodes was chosen in proportion to the
scene’s size.

The test episodes used in Table 2 of the paper are proposed in NRNS [27], which are divided into
two types: straight and curved. The ratio of shortest path geodesic-distance to euclidean-distance
between the starting and target locations in straight episodes is 1:2, and the rotational difference
between the start position and destination is 45°. All other start-goal location pairs are labeled as
curved episodes. There are 2,806 straight episodes and 3,000 curved episodes in total. Similar to
the episode configuration used in Table 1, there are around 1,000 items divided according to the
difficulty level.

Similarity thresholds. Two pretrained encoders are used to determine whether to add or update
the graph with a new observation when building TSGM. We adopt PCL [29] to obtain image simi-
larity and Supervised contrastive learning [28] d to train object similarity. We apply the pretrained
PCL [29] model and set the image similarity threshold (τi) to 0.75. We trained the model [28] for
object similarity utilizing provided identity values for objects on Gibson train environments as la-
bels. After training, the object threshold is chosen to distinguish objects with the greatest margin of
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error when tested on the Gibson test scene. To evaluate the trained object encoder, we apply clus-
tering metrics, normalized mutual information (NMI) and purity. NMI is calculated by taking the
mutual information between the true object identity distribution and the estimated distribution and
then normalizing the value by the self-information of the two distributions. Furthermore, purity is
defined as the number of majority positives divided by the total number of samples. With 0.839 NMI
and 0.878 purity, the trained object encoder performed well in predicting object identifications on
the clustering measures. As a result, the object threshold (τo) is set as 0.8 for all experiments.

Appendix B Graph Memory Construction

When an agent is placed in an unknown environment, the agent explores the environment to acquire
a graph memory. The graph memory is constructed using two pretrained encoders: an image encoder
encim and object encoder encobj . To improve the graph with common objects, we add a rule that
prevents adding a new image node if the ratio of the number of common objects of the two image
nodes is larger than 10%,

CO(xm, xt) =
#(O(xm) ∩O(xt))

#(O(xm) ∪O(xt))
> 10%, (5)

where O(xm) represents the objects connected to the image node xm. The detailed algorithm for
building a topological semantic graph is described in Algorithm 1.

Object node. Object features are retrieved using ROI-align [24] based on the position of the ob-
ject bounding box. The object features are extracted from the output of the conv4 layer of ResNet18.
The object category from the detector is encoded with two-layered neural networks and then con-
catenated to the object features to make an object node state zk = 〈Fok , ck, rk〉 for kth object. Fok
is the extracted object feature, ck represents the category of the object, and rk is the detection score
of the object. The number of categories is 80 since we employ a detector that is pretrained on the
COCO dataset.

Object node updating rules. The graph builder compares the object’s detection scores when the
same object node is found. If a new input object’s feature is similar to an object in memory and
the category is the same, the graph builder determines that the two objects are identical. The graph
builder compares the detection scores to increase the detected features’ quality. Only when the newly
discovered object has a higher score, the graph builder updates the node feature.

Graph connections. While building the graph, the affinity matrices can be calculated based on
the edge information,

Aim[xv, xw] = 1 ∀(xv, xw) ∈ Eim,
Ac[xv, zk] = 1 ∀(xv, zk) ∈ Ec.

(6)

To make objects in proximity connected in the graph memory, we calculate the affinity matrix for
object nodes to be connected to objects in the neighbors of the current image node using the image
affinity Aim and image-object affinity. The object graph affinity matrix can be calculated using the
above matrices,

Aob = ATc (Aim + I)Ac, (7)
where I is an identity matrix, which connects the object nodes that share the same image node.

Appendix C Cross Graph Mixer

The cross graph mixer module runs for L steps and is defined in terms of a message function M
and vertex update function U . The message function can be seen as a composition of two functions,
M = C ◦ S, where S is the self-update function, and C is the cross-update function. At first, the
image memory state x and object memory state z are the inputs of the network,

hi1v = xv,∀v ∈ Vim
ho1k = zk,∀k ∈ Vob.

(8)

13



Algorithm 1: Build Topological Semantic Graph Memory
Input: Sequence of the input images, B
Output: Topological semantic graph, G

1 Initialize empty vertex set, Vim ← ∅ , Vob ← ∅
2 Detect objects from the input image, z1 ← Detector(I1)
3 Initialize the last localized image, Il ← I1
4 Initialize the neighboring objects Ol ← z1
5 Let F il ← encim(Il); xl ← 〈F il 〉
6 for It ∈ B, each observation in the batch, do
7 Encode image, F it ← encim(It); xt← 〈F it 〉
8 if current place is where an agent already explored, i.e., ∃xm ∈ Vim s.t.

cos dist(F im,F it ) ≥ τi and CO(xm, xt) > 10%, then
9 Update the most similar image node in the memory using new feature:

10 k← argmaxmcos dist(F im,F it )
11 F ik ←F it
12 Connect the kth node to the last localized node:
13 Eim ← Eim ∪ (xk, xl)
14 end
15 else if It is new, i.e., cos dist(F il ,F it ) ≤ τi or t=0, then
16 Add xt, which is 〈F it 〉 to the graph G:
17 Vim ← Vim ∪ {xt}
18 Eim ← Eim ∪ (xt, xl)
19 Update the last localized image node:
20 Il ← It
21 Detect objects from the input image, zt ← Detector(It)
22 Sort objects by detection scores.
23 for ∀bk ∈ zt, each object in the current observation, do
24 Encode objects, Fok ← encobj(bk)
25 if bk exists in the neighboring objects Ol, i.e., ∃zm ∈ Ol s.t. cos dist(Fom,Fok )

≥ τo and ck = cm and rk > rm then
26 Update the most similar object node in the Ol using new feature:
27 k← argmaxmcos dist(Fom,Fot )
28 Fok ←Fot
29 end
30 else if Input object is new according to the neighboring objects, i.e.,

cos dist(Fom,Fok ) ≤ τo, ∀bm ∈ b̂n or ck 6= cm, then
31 Add the object state zk, which is 〈Fok , ck, rk〉 to the graph G:
32 Vob ← Vob ∪ {zk}
33 Ec ← Ec ∪ (xl, zk)
34 end
35 end
36 Ol ← 〈zt, Neighbor(zt)〉
37 end
38 end
39 G ← {Vim,Vob, Eim, Ec}
40 return G

For lth step, where l ∈ {1, ..., L}, image and object node states are self-updated to get contextual
representations between nearby locations or objects,

m̂i
l

v =
∑

w∈Ni(v)

Sli(hi
l
w, Aim, g),

m̂olv =
∑

k∈No(v)

Slo(ho
l
k, Aob, g),

(9)
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where Ni(v) and No(v) denote the image/object neighbors of the vth node, respectively. The self-
update message function S makes a d dimensional vector by aggregating connected nodes, i.e.,

Sli(hiw, Aim, g) = Aim[v, w]Bli(evw)fi(hi
l
w||g)

Slo(hok, Aob, g) = Aob[v, k]Blo(evk)fo(ho
l
k||g),

(10)

where || is a concatenation operation and fi and fo are two-layered neural networks. Here, B(evw)
is a learned connection relationship between vth and wth nodes, i.e., the edge vectors between the
nodes, which maps the edge vector evw to a di × di matrix,

Bli(evw) = vTi concat(Wihi
l
v,Wihi

l
v)

Blo(evk) = vTo concat(Wiho
l
v,Woho

l
k),

(11)

where Wi ∈ RC×di , vi ∈ R2di×di , Wo ∈ RC×do , vo ∈ R2do×do×do are the matrix parameters,
which are applied for all latent nodes.

Then, the nodes aggregate the different types of nodes during the message passing phase to make a
complete message milv and molv . For this, nodes cross update is done for image nodes to aggregate
messages from object nodes, while object nodes use image nodes to create messages,

milv =
∑

k∈No(v)

Cli(m̂i
l

v, m̂o
l
k, Ac),

molv =
∑

w∈Ni(v)

Clo(m̂o
l
v, m̂i

l

w, Ac),
(12)

where

Cli(m̂i
l

v, m̂o
l
k, Ac) = m̂i

l

v + f ′i(Ac[v, k]B
l
i(evk)f

′′

i (m̂o
l
k||g)),

Clo(m̂o
l
v, m̂i

l

w, Ac) = m̂olv + f ′o(Ac[w, v]B
l
o(ewv)f

′′

o (m̂i
l

w||g)),
(13)

where f ′o, f
′
i , f

′′

o and f
′′

i are two-layered neural networks.

Finally, the update function U transfers messages from object nodes to image nodes,

hil+1
v = U li (hi

l
v,mo

l
v),

hol+1
v = U lo(ho

l
v,mi

l
v),

(14)

where,

U li (hi
l
v,mo

l+1
v ) = hilv + gi(Ac[·, v]mol+1

v ),

U lo(ho
l
v,mi

l+1
v ) = holv + go(Ac[v, ·]mil+1

v ),
(15)

where gi is a neural network that maps hidden states of an object to hidden states of the connected
images and go is a neural network that maps hidden states of an image to hidden states of the
connected objects.

After L iterations, the output of the network become a contextual memory. The output of the image
stage is,

miv = hiLv ∀v ∈ {1, ..., N},
mok = hoLk ∀k ∈ {1, ...,M}.

(16)

Note that mi = {mi1, ...,miN} is the contextual image memory and mo = {mo1, ...,moM} is the
contextual object memory.

Appendix D Object-Based Methods

We compared TSGM to navigational methods [36, 37] that employ object information. In VT-
Net [36], an image and objects observed by an agent are combined to produce a fused representation
of the place. VTNet [36] does not have any explicit memory and only has an implicit RNN memory.
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Figure 7: Correlation between the object score and image score. It indicates that the object nodes
help image nodes to localize to the current node.

TSGM, on the other hand, can explicitly employ previous knowledge gathered while navigating the
environment. VTNet [36] connects object information when they are detected in the same image.
Since it combines objects detected in the same image, VTNet [36] can be seen as a method that only
connects objects detected in the same image. On the other hand, TSGM can connect neighboring
object nodes even if the objects are not detected in the same image, resulting in contextually solid
representations.

In Object memory transformer [37], image and object representation are saved in the explicit mem-
ory every time step. Since TSGM only puts a new node into a graph memory based on the similarity
between memory and current observations for both image and object graphs, it has less redundancy
than [37]. [37] utilizes only the preceding T chunks of data are utilized. TSGM, on the other hand,
makes use of all graph memory information derived from past exploration of the environment. This
is achievable due to TSGM’s low redundancy.
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Figure 8: Attention scores of the image and object nodes.
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Figure 9: Comparison with the method without objects. The stop button can be pressed more pre-
cisely through the object context.
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Figure 10: Comparison with the method without objects. The agent can utilize object configurations
to get the semantic knowledge how to go from the bathroom to living room.
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Appendix E Impact of Landmarks

Object helps localization. To demonstrate the influence of object information on performance
improvement, we conducted additional experiments using attention values from the memory atten-
tion module (Section 3.4). The agent draws the best image memory in the memory attention module
given the current observation. We assume that localization is successful if the selected image node,
which has the highest attention score, is the closest to the agent location. The success rate of local-
ization is computed using the 1,007 hard episodes, which are used in Table 1 of the manuscript. As a
result, localization performance is 38.5% without an object node whereas it is 68.2% with an object
node, an improvement of 29.7%.

Object and image are correlated. To demonstrate that incorporating objects assists in localiza-
tion, we investigate the correlation between image and object nodes. We averaged the obtained
attention values across the objects in an image since it contains many objects. The vertical axis in
Figure 7 reflects the average attention score of the object nodes connected with the corresponding
ranking’s image node. Since the attention score tends to diminish as the number of image nodes
rises, the image node ranking was employed as the horizontal axis by sorting in descending order
using the attention value. As a consequence, the image node selected as the current node demon-
strated a substantial association with a higher object node score (Figure 7). The likelihood of being
in the adjacent image node increases as the object node score increases, suggesting that the inclusion
of object nodes benefited with agent localization. As a consequence, the image node selected as the
current node demonstrated a substantial association with a higher object node score. In summary, it
is claimed that the utilization of object nodes enables the agent to search the path more efficiently
while avoiding getting lost by properly localizing the agent.

Visualization of the attention score. We showed the attention scores of image and object nodes
to demonstrate the significance of object features. To use a ground truth detector, we finetuned
TSGM using PPO for 2M frames in the Gibson tiny dataset for this experiment. For the comparison
experiments, a model without objects was also finetuned in the same setting, using PPO for 2M
frames. The categories in the Gibson tiny dataset are the same as those in the COCO dataset; we
displayed 24 of them. Besides the illustration, we show the legend that indicates the color of each
object category. The image node is blue, whereas the object node is colored differently for each
category. The attention values are multiplied by 100 and scaled to a score ranging from 0 to 100 for
the best view. In Figure 8, the attention scores are depicted in Figure 8(a) at step 51 and Figure 8(b)
at step 59. When the bench node is not visible, the nearest image node has a score of 29.5. After the
bench node is recognized, the current node’s attention score climbs to 41.5. The score of the currently
located bench and potted plant is high, indicating that the current image node’s localization accuracy
has improved. A model in Figure 9(a) is trained using an object, whereas a model in Figure 9(b) was
trained without an object. The initial paths taken by Figure 9(a) and Figure 9(b) are similar, but
Figure 9(b) failed since it pressed the stop button at the incorrect place. The model in Figure 9(b)
was unsuccessful since it could not localize at the goal. On the other hand, Figure 9(a) successfully
hit the stop button precisely at the target location after realizing that the place at time step 28 was not
the target position by using the object configuration information. Figure 10 shows the result of the
model trained without an object (Figure 10(b)) and the version trained with an object (Figure 10(a)).
The goal is successfully reached by Figure 10(a) in 75 steps, but Figure 10(b) demonstrates that it
does not exit the bathroom. This issue appears since the agent failed to acquire the semantic relevant
knowledge to go from the bathroom or room to the living room.

Appendix F Path and Graph Visualizations

The experimental results on real world are visualized in Figure 11,12,13,14. All episode goals are
sampled from 6m to 8m. Since the locations of nodes are not accurate in real world, we collected
the node locations for the best view.

Robot paths on the simulator are illustrated in Figure 15,16,17,18,19,20,21,22,23,24,25. In the Fig-
ures, the color gradation represents the flow of time. The blue arrow symbolizes the starting point,
and the red flag indicates the destination. An image node is represented by a blue circle, and an object
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node is represented by a pink triangle. The paths are from test episodes proposed in VGM [18], also
used in Table 1. The paths are drawn in two columns in pairs. The path generated by the proposed
algorithm is in the left column, and the path obtained by the comparison algorithm is in the right
column. The routes provided are more effective and efficient than the comparison algorithm [18]
and reach towards the target.

Figure 11: Real robot experimental results from the laboratory environment.

Figure 12: Real robot experimental results from the laboratory environment.
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Figure 13: Real robot experimental results from the laboratory environment.

Figure 14: Real robot experimental results from the home environment.
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Figure 15: Examples from Gibson’s Cantwell environment.
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Figure 16: Examples from Gibson’s Cantwell environment.
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Figure 17: Examples from Gibson’s Eastville environment.
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Figure 18: Examples from Gibson’s Denmark (bottom), Greigville (top left), Ribera (top right) en-
vironment.
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Figure 19: Examples from Gibson’s Mosquito environment.
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Figure 20: Examples from Gibson’s Mosquito environment.
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Figure 21: Examples from Gibson’s Mosquito environment.
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Figure 22: Examples from Gibson’s Pablo (top) and Mosquito (bottom) environment.
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Figure 23: Examples from Gibson’s Scioto environment.
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Figure 24: Examples from Gibson’s Scioto environment.
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Figure 25: Examples from Gibson’s Scioto environment.
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