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ARTICLE INFO ABSTRACT

Keywords: In this paper, we introduce the Semantic Environment Atlas (SEA), a novel mapping approach designed
Semantic navigation to enhance visual navigation capabilities of embodied agents. The SEA utilizes semantic graph maps that
Embodied agents intricately delineate the relationships between places and objects, thereby enriching the navigational context.

Autonomous navigation These maps are constructed from image observations and capture visual landmarks as sparsely encoded

nodes within the environment. The SEA integrates multiple semantic maps from various environments,
retaining a memory of place-object relationships, which proves invaluable for tasks such as visual localization
and navigation. We developed navigation frameworks that effectively leverage the SEA, and we evaluated
these frameworks through visual localization and object-goal navigation tasks. Our SEA-based localization
framework significantly outperforms existing methods, accurately identifying locations from single query
images. Experimental results in Habitat Savva et al. (2019)scenarios show that our method not only achieves
a success rate of 39.0%—an improvement of 12.4% over the current state-of-the-art—but also maintains

robustness under noisy odometry and actuation conditions, all while keeping computational costs low.

1. Introduction

Embodied AI technologies, which are becoming increasingly ubiq-
uitous in modern life, are proving integral to various applications,
including delivery robots, household chore robots, and self-driving cars.
The pivotal success factor in this field has been the development of in-
telligent agents that use RGB sensors to interpret semantic knowledge,
particularly through learning-based methods such as reinforcement
learning (RL) [1-22]. These methods, while powerful, introduce a
significant challenge: high computational costs.

Addressing this challenge, this paper introduces the Semantic Envi-
ronment Atlas (SEA), a novel map type. The SEA is specifically designed
to tackle visual localization and navigation tasks in a computation-
ally efficient manner. The SEA sets itself apart with three distinctive
characteristics that collectively enable successful visual navigation.

The first distinctive characteristic of the SEA is its robust navigation
performance against sensor noise. Sensor noise is a common problem in
navigation tasks, which tends to accumulate during sequential decision-
making processes. Traditional approaches have tried to mitigate this
issue through loop closure, but such solutions are challenging for
deep learning-based methods that lack state-space-based noise filtering.
Consequently, current navigation methods [14,15,20,23] often assume
a noiseless pose sensor—an unrealistic premise in real-world scenarios.
In contrast, our method leverages semantic knowledge, enabling it to
navigate robustly even with noisy sensors.

* Corresponding author.

The second distinctive property of the SEA is its ability to localize the
current position using semantic knowledge. This capability addresses a
key challenge: predicting an object’s position with a partially observed
map. While recent work [16,24,25] has integrated graph-based priors
into the metric map to counter this issue, our method takes a step
further by incorporating additional semantic knowledge, such as the re-
lationships between objects and places, thereby bolstering localization
performance.

The third and final property of the SEA is its adaptability. Unlike
recent methods [14,15] which do not update upon environmental
changes, the SEA is designed to self-update based on these changes.
This adaptive quality permits navigation agents to adjust their destina-
tions and explore alternative target locations if the initial object search
is unsuccessful.

The SEA is constructed using semantic graph maps, which incor-
porate both place-object and place-place relationships. An agent uses
the place-object relationship to pinpoint the target location where
an object is most likely to be found. To reach this target, the agent
leverages place relationships to determine the optimal semantic path.
For local navigation, the agent identifies subgoal candidates based on
current object observations and chooses the subgoal with the highest
reachability to the target. Our method’s reliance on semantic path
planning eliminates the need for a global pose sensor, thus enhancing
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Fig. 1. Overview of semantic environmental atlas (SEA). The semantic graph map (SGM) is updated using visual observations. Then, the place relationship and place-object
connections across environments are updated using multiple semantic graph maps collected from different environments. A global policy samples a subgoal g,, which is reachable
and most likely to be near to the target place. A local policy generates navigational actions to reach the subgoal.

robustness against noisy odometry sensors. Additionally, we implement
relation updates in new environments since the semantic structure can
vary significantly from one environment to another. These updates
allow the place graph to adapt, ensuring the most effective semantic
path is selected in new settings.

The proposed method is evaluated using MP3D [26] for object goal
navigation. The experimental study demonstrated that our navigation
framework, by leveraging the SEA, achieved a success rate of 39.0%.
This result marks a substantial 12.4% improvement over the current
state-of-the-art.

2. Related work

Visual navigation without any map. As a policy network, a recurrent
neural network (RNN) is a simple method to make an implicit se-
mantic prior [19,21,27]. DDPPO [27] has a vanilla RL policy with
a CNN backbone followed by an LSTM as a policy function. Red-
Rabbit [21] augments DDPPO with multiple auxiliary tasks, such as
predicting agent dynamics, environment states, and map coverage with
ObjectNav. Treasure Hunt Data Augmentation (THDA) [19] improves
the RL reward and model inputs, which result in better generalization
to new scenes. Since an RNN has a difficulty of backpropagating a long
sequence, an RNN can be replaced with an explicit structure [14-16,
20,22-24,28].

Visual navigation with a metric map. Spatial metric map-based RL meth-
ods [14,15,20,23] propose independent modules for semantic mapping,
high-level semantic exploration, and low-level navigation. The seman-
tic exploration module is learned through RL, yet it is more sample-
efficient and generalizes better than end-to-end RL. Active Neural SLAM
(ANS) [14] has a hierarchical structure to explore an environment:
global and local policies. The global policy constructs a top-down 2D
map and estimates a global goal. Given the global goal from the global
policy module, a local policy module plans a path to the goal using a
simple local navigation algorithm. Semantic exploration [15] is a study
that extends ANS. The metric map does not only represent obstacles
but draws a semantic map and uses it for navigation to improve
performance. This method implicitly learns semantic information for
navigation. PONI [20] reduced computational costs in visual navigation
by proposing non-interactive learning. Additionally, it improved the
navigation performance by learning the encoder by calculating the
probability that there is a space or an object beyond the frontier
boundary of the current map and then moving to the boundary where
the object is likely placed. However, since this method is trained using
a top-down map, it is greatly affected by the pose sensor.

Visual navigation with a graph map. Our work proposes a method to
collect semantic priors and use it for navigation. Several works have
employed semantic priors into a graph to enhance semantic reasoning
in visual navigation [16,22,24]. Wu et al. [22] tackle the room nav-
igation task using room relationship, while it does not consider the
relationship between a room and an object. Zhang et al. [24] divide
a room into several zones to find an object and find the reachability
between these zones for navigation. However, the connection between
an object and a zone is ambiguous. For example, a bed can exist in

any zone in a bedroom. Campari et al. [16] improve performance by
building an abstract model in addition to the existing metric map-
based methods. Here, the abstract model comprises nodes composed
of images and objects, and the connection between nodes is an action
taken to navigate between two places. However, actions for moving
from one place to another could differ depending on the structure of
houses. For example, in one house, the bedroom may be to the right
of the living room, and in another, the bedroom may be to the left.
Therefore, the structure of the environment is hard to be expressed with
the abstract model.

The proposed method collects relationships between place clusters
and objects using a sequence of observations and uses them in a new
environment for navigation.

3. Proposed method
3.1. Problem statement

In a given unknown environment, an agent is tasked with traveling
to an object specified by its category name (e.g., chair) (see Fig. 1).
At the start of each episode (r = 0), the agent is placed at a random
navigable position within the environment. The agent is equipped with
a 640 x 480 RGB-D sensor (sf) and a 512 x 128 panoramic RGB sensor
(s7), along with the goal category (Ogoa)) for the current time step.
The panoramic RGB sensor (sf ) is specifically used for constructing
the semantic graph map. It is important to note that a pose sensor is
employed only in the local policy, and global pose sensor readings are
not used in this work. The agent can perform actions 4, ~ A, where
A includes moving forward (0.4 m), turning left (30°), turning right
(30°), and stopping. To complete the task, the agent must press the stop
button once it is within d; = 1.0 m of the target. The episode concludes
either when the agent stops or when the time budget of T = 500 steps
is exceeded.

3.2. Semantic graph map

Inspired by the topological graph map approach outlined in [17],
we construct semantic graph maps, E,, for navigation in unknown
environments, as depicted in Fig. 2. At each time point 7, the semantic
graph map includes three types of nodes—place nodes (Vpj,c.), image
nodes (V;,), and object nodes (V,,)—and corresponding edges: &,
&0, and &;. Each place node, represented as P, connects to image
nodes with an affinity matrix A;,, € RV¥*Ni indicating the relational
strengths. The object nodes, x; where x; € R, are similarly linked
to image nodes with an affinity matrix A;, € RNi*No. The edges &
connect place and image nodes with an affinity matrix Aj; € RNXN:i |
illustrating the relationships between places and images. The affinity
matrices are computed using a multi-layer perceptron (MLP) network,
which processes the features of nodes to output a scalar similarity
value. The semantic graph map is constructed incrementally as the
agent navigates, with the graph at time ¢ being a subset of the graph at
time 7+ 1. This dynamic mapping allows the agent to reason about and
navigate through the relationships among objects, images, and places
towards the designated goal.
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Fig. 2. Construction of semantic graph map. By integrating the current observation and the previous semantic graph map (SGM; E,_,), the graph map is updated. If it is
discovered that the current location differs from the previous location, an image node is added to the graph. Similarly, object nodes are added to the graph when previously

undetected objects are detected.

Place graph. In visual navigation, accurately identifying semantic
places, such as living rooms and bedrooms, is crucial. To address this
challenge, room navigation methods [22,29] employ a place recogni-
tion algorithm. However, some places can be ambiguous and difficult
to classify distinctly. To overcome this issue, a clustering method [30]
is applied to train a place encoder, fyj,ce, Which groups similar features
across similar places. This encoder takes as input image features, object
features, and object categories to extract place information, defined
as U, = fplace(s}-0f,0%). Here, o, represents objects detected from
a panoramic RGB sensor sf ; of is a feature vector of o;; and ofa‘ is
the object’s category. Using a panoramic RGB sensor is advantageous
because the recognition of the place is invariant to camera rotation.
To bring images with similar semantic meanings, such as those from
a bedroom, closer together in the metric space, a contrastive loss is
employed. The loss function for training the place encoder with a batch
of B images is formulated as follows:

& exp (v; - V)/¢)
L = —1 —"
piace = 2102 exp (v, - 0 /0)

i=1 j=0

(€8]

where v, is the query embedding and v/ are positive place embeddings
for location i, sampled from the same place, and ¢/, includes one
positive embedding and r negative embeddings from different places,
with ¢ acting as a temperature hyper-parameter. Positive samples are
drawn using ground truth place information which includes labels for
ambiguous places such as ‘other room’. To handle this, we utilize eight
specific room labels, described in Section 4.2. We modify the con-
trastive loss by replacing the positive sample with images generated by
randomly rotating the query image, a method we denote as Lye,,. This
approach aims to bring images from nearby locations closer together
in the metric space. Subsequently, we apply the K-means clustering
algorithm to cluster features, resulting inasetP={ P, ..., Py ). These
clustering results are then used as the ground truth for the clustering
loss. Metric learning involves iteratively combining all losses, £
Lplace + Lnear + Lclusters With the K-means clustering process.

met

Image graph. An image encoder [18], represented as i, = fimg(sf ), is
crucial for assessing image similarity to determine the novelty of nodes
in the semantic graph map. When the agent moves to a new location,
it evaluates the similarity between the current and previous image
nodes using a cosine similarity function, sim(-,-). If this similarity,
sim(i,_;,i,), drops below the threshold 6;;,, = 0.8, the system checks if
the observed image node already exists in the graph. If not, indicating
no similar existing image nodes, the node is considered new (i,) and
connected to the previous image node (i,_;). Conversely, if a similar
node is found, it is updated with the new image and also linked to i,_;.
Image graph construction allows the system to capture and represent
the spatial relationships between different places and objects within an
environment. This spatial representation is crucial for tasks that require
an understanding of the layout of an environment, such as navigation
and path planning. The adjacency matrix of image nodes, A;,, € RVi*Ni,
is a binary matrix that records these connections. Additionally, when
a new image node is detected, it and the place cluster associated with

the image node are linked, setting A;[i, j]1 = 1 for the ith place and jth
image, reinforcing the semantic links.

Object graph. Objects are encoded using an object encoder, x; =
Sobj (57, of, 0%a), which uses contrastive learning to recognize objects as
the same even when viewed from different perspectives [17]. Here, o;
represents an object detected from s” using MaskRCNN [31]. The graph
update module assesses whether these objects are already present in
the graph. If the similarity between the detected object and an existing
object in the graph, sim(x;,x;) is greater than 6, = 0.8 and their
categories match (of"it = o;a‘), the object is considered the same. If the
detected object is not in the graph, it is added as a new object node
and linked to the current image node (i,), with A;;[i,j] = 1 indicating
the connection between the ith image node and the jth object node.
Conversely, if the object is already in the graph but the detected object
has a higher detection score, the existing object node is updated to
reflect the new detection.

3.3. Localization

In this study, we test the localization function, F,., to demonstrate
how semantic knowledge can enhance localization accuracy. The input
to this function includes the current semantic graph map, G,, along with
source and target images. We employ Graph Neural Networks (GNNs)
to encode the graph data effectively and Transformer [32] decoder
networks to extract relevant localization information. Specifically, F,.
utilizes these images to identify corresponding nodes within the graph.
It then estimates the distance between these nodes, thereby facilitating
precise localization based on semantic relationships captured in the
graph.

3.4. Semantic Environment Atlas

We propose a Semantic Environment Atlas (SEA) that synthesizes
semantic graph maps collected from various environments into a uni-
fied structure, rather than merely compiling individual maps. This
integration facilitates a deeper and more comprehensive understanding
of the environments and their interrelationships. The SEA, denoted as
S, = {I', R}, comprises two key components: a place reachability matrix
(T") and a place-object connection matrix (R). The place reachability
matrix (I') defines the accessibility between different places, indicating
possible paths and their navigability. Meanwhile, the place-object con-
nection matrix (R) details the associations between various places and
the objects found within them, providing crucial contextual information
that enhances navigational decisions and spatial reasoning.

Place-place relationship. A node within the place graph represents the
centroid of a place cluster, and connections between nodes signify
the reachability between places. This reachability is derived from se-
mantic graph maps collected across various training environments.
If two connected image nodes, i, and i,, belong to different place
clusters, P, and P,, it is inferred that the clusters are reachable. A
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Fig. 3. Formation of Semantic Graph Map from Training Environments. The figure illustrates the process of forming a semantic graph map from multiple training environments.
In each training environment, it checks to see whether there is a pair of place clusters. If there a connection between the pair of places, the reachability is set to one; otherwise,

Zero.

connection between clusters in any scene sets the cluster reachability
to one; otherwise, it is zero. This procedure is repeated across all
training scenes, and the average value is taken as the final measure of
reachability between places. The formation of the semantic graph map
from episodic graphs in training environments can be shown in Fig. 3.
The top section of the figure shows a semantic graph map where nodes
represent different rooms (e.g., Entrance, Living Room, Kitchen) and
edges represent the connectivity between them. For example, the edge
I'[i, j] connects nodes P, (Bedroom) and P, (Bathroom), indicating a
valid connection in the graph. In the bottom section of the figure, n
floor plan layouts are depicted, each demonstrating the connectivity
between rooms in various training environments. In the first floor
plan, the connection between the bedroom and bathroom is correctly
identified (6,(A.[i,j]) = 1), as indicated by the green check mark. In
the second training environment, the connectivity between bedroom
and bathroom is not recognized (6,(A.[i,j]1) = 0), marked by the red
cross. When considering N training environments, the reachability (I")
between place cluster i and j is calculated as follows:

TN G, (ALL D
S 8,(P)8,(P)T

where A, = ApiAimA; and §,(A.[i,j]) indicates the existence of a
connection between place cluster i and j. The function §,(P;) denotes
the presence of the place cluster P; in the nth scene.

It is important to note that the same places are not connected, thus
A [i,j1 =0 when i = j. Furthermore, to normalize the reachability, we
calculate it based on the number of environments in which each cluster
appears, rather than the total number of environments. Reachability is
set to zero if a cluster does not appear in any scene.

T, jl= 2

Place-object relationship. The relationship between object nodes and
place clusters is established by connecting object nodes to image nodes
within a graph, and then linking these image nodes to place graph
nodes. This linkage facilitates the computation of the probability distri-
bution for place and object categories. Specifically, for the nth training
environment, we calculate Af ) = A% AL AC , where A, € RNo*Ne maps
each object node to its correspon(ging object category and N, is the
number of object categories.

By aggregating all semantic graph maps from the training environ-
ments, the relational connection between each place cluster and the
object categories is defined as R = YN An,, where R € RNpXNe
represents the number of connections between place clusters and object
categories.

Given a set of object categories O = {Oy, ..., Oy_}, the probabilities
of encountering a specific place cluster i given an object category j, and
conversely, the probability of encountering an object category j given
a place cluster i, are computed as follows:

R[i, j] R[i, j]

— - POj|1P)=

X2 Rk, j1 2.5 Riie]
where R[i, j] indicates the number of connections between place cluster
i and object category ;. These probability distributions are illustrated
in Section 2 of the supplementary material.

p(F10)) = (3)

Updating relations. Our experimental setup is designed to test the nav-
igation agent’s ability to plan its path using common sense, akin to
human navigation, in a new environment without a pre-existing map.
To adapt effectively to these unfamiliar settings, the SEA updates the
graph in a Bayesian manner [22]. As illustrated in Fig. 4, when a new
place cluster or object-place connection is discovered during the con-
struction of the semantic graph map, the prior probability is adjusted
based on the new observations to calculate the posterior distribution.
Given that these probabilities are determined by counting occurrences,
the impact of new connections is generally minor. Thus, the update rate
is set at 0.1 of the maximum count value (max(R[i,j])). The graph is
continuously updated at every step. If the target object is not detected
in the expected target place, the probability associated with the target
object being in that place decreases. As the connection between the
target object and the place cluster weakens, the next most connected
place cluster is identified and explored.

3.5. Global policy

The global policy (z,) utilizes the RGB-D image from the directional
camera (s¢) to determine subgoals (g,) through semantic path planning,
which leverages the place relationships and place-object relationships
within the SEA. For example, to navigate from a bathroom to a kitchen,
the calculated path might be bathroom — bedroom — living room —
kitchen. Rather than attempting to locate the kitchen directly from the
bathroom, the agent first navigates to intermediary nodes such as the
bedroom and the living room, thereby systematically discovering the
optimal path.

Current place. To enable the semantic path planning, the agent first
determines its current location by encoding RGB images and object
information using the place encoder (as detailed in Section 3.2). The
extracted place feature, derived from the encoded RGB image, object
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features, and object category, is then compared to place clusters (P)
using cosine similarity to identify the nearest place cluster, thereby
locating the agent within the environment.

Target place. The target place is chosen based on its association with
the target object. The place cluster with the highest probability of
containing the target object is selected as the target destination. This
selection process is mathematically formulated as follows:

k:‘ = argmax, p, (P, klOgoal)’ @

where P represents the potential target place, and p,(P;|Og,)) denotes
the probability of place cluster k given the target object Ogpy, as
defined in .

Subgoal place. Using conventional graph-based planning methods, a
navigation agent can identify an optimal trajectory to the target place.
However, the optimal subgoal may not always be near the current
location. To address this, subgoal candidates are selected among the
visible places identified using detected objects from the directional
Sensor.

To streamline the selection process and reduce computational com-
plexity, the probability of each place, p,(P|o,), is approximated using
the importance of the object category. The object importance is defined
as the inverse of the entropy of the object distribution conditioned on
places, given as 1/Ep[—log p,(O|P)]. Objects associated with a single
place cluster have high importance, whereas those common to multiple
clusters exhibit lower importance.

Among the observed objects, the category deemed most important,
denoted o, is used to determine the place cluster with the highest prob-
ability, calculated as argmaxpp(PP|o). To facilitate this, the directional
image with a field of view (FOV) of 120° is narrowed by 40° to focus on
objects directly ahead (o /-*), to the left (o,,), and to the right (o,.). These
selected objects help estimate the subgoal candidates: P; = { P/, P, P,},
where P, = argmaxpp,(P|o,,) for x representing the front, left, and right
directions, respectively.

A subgoal place (g,) with the highest reachability to the target place
cluster is then chosen from these subgoal places. The selection is based
on the following formula:

m—1

& = argmaxp p, H Tp_p -Tp
i=1

Ti-1" T Tm—1
i=

P> )
where {PTO, P P~} represents the optimal semantic path from
the subgoal to the target place. If a subgoal is beyond a reasonable
straight-line distance, it is considered unreachable and is excluded,
similar to the NRNS method [25]. The remaining candidate that is both
reachable and closest to the semantic subgoal is selected as the final
subgoal. If all potential subgoals belong to the same place cluster, or
if no detected objects aid the decision, a subgoal is randomly chosen
among them. This mechanism encourages broader exploration by the
agent, preventing it from being confined to a specific area.

Furthermore, the semantic path is derived from a shortest path
calculation by setting the edge weight in the place graph between ith
place and jth place to —log(T'p, P,)5

T* = argmin_ exp 2 —logT'p  p ), (6)

Tie1' i
i=1

where T* = {7g,...,7,]} is a set of indices representing the optimal
semantic path, starting from P, and ending at P, , the goal place. This
trajectory, T*, represents the most probable path, effectively bridging
the start and the target locations, optimizing the agent’s navigation
strategy.

3.6. Local policy

The local policy (r;) processes directional RGB-D sensor data (s;’ )
along with local pose sensor readings to navigate the agent towards the
designated subgoal g;. It employs the fast marching method (FMM) [33]
to compute the shortest path from the agent’s current location to the
subgoal. This computation makes use of the obstacle channel, which
is derived from the top-down map created from the depth component
of the RGB-D input. Upon determining the shortest path, the local
policy executes a series of deterministic actions to guide the agent along
this path. This strategy of navigation has been validated in previous
research, demonstrating its effectiveness in various scenarios [14,15,
20].

4. Experiments
4.1. Baselines

Nonv-interactive baselines. BC: A baseline for behavior cloning was
trained using an RNN-based policy that takes RGB-D, agent pose, and
goal object category as inputs.

End-to-end RL baselines. DD-PPO [27]: Standard end-to-end RL with
distributed training over several nodes is proposed. Red-Rabbit [21]:
Auxiliary tasks that improve sampling efficiency and generalization to
previously unseen domains are provided. THDA [19]: RL reward and
model inputs are improved, which results in better generalization to
new scenes.

Metric map-based baselines. FBE [23]: A traditional frontier-based ex-
ploration method is adapted to object goal navigation using a detector
to detect the target. It triggers a stop when the target is reached using
the metric map. ANS [14]: A spatial metric map-based RL policy trained
for exploration is adapted to the object goal navigation using the same
heuristic as FBE[23] for goal detection and stopping. PONI [20]: Non-
interactive training is used to navigate and only trained potential fields
are used to determine the next subgoal.
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Graph map-based baselines. ANS + SI [16]: An abstract model is at-
tached to ANS [14]. The agent incrementally extends the abstract
model and reuses the learned model from previous episodes. SemExp
+ SI [16]: An abstract model is attached to semantic exploration
(SemExp [15]) using the same abstract model strategy as ANS +
SI. For DD-PP0O, Red-Rabbit, THDA, and PONI, publicly available
MP3D results on the Habitat ObjectNav leaderboard are used. For ANS,
pre-trained models released by the authors are evaluated. For ANS + ST
and SemExp + SI, official results from the published paper are used.

4.2. Experimental settings

Datasets. We utilized the Habitat simulator [34] to conduct experi-
ments using the Matterport3D (MP3D) [26] datasets, which feature
photorealistic 3D reconstructions of the real world. The standard 61
train/11 val splits for the ObjectNav configuration, as described in Sec-
tion 3.1, were employed. It should be noted that only the local policy
depends on the depth and pose, making the proposed method consid-
erably more practical for use in the real world with noisy pose and
depth sensors. The Habitat ObjectNav dataset [34] was used for MP3D
experiments, with 21 goal categories (provided in the supplementary
Section 1). We utilized 2195 episodes for the test.

Evaluation metrics. All methods were evaluated using the success rate
(Success), success weighted by path length (SPL) [35], and distance
to success (DTS). Success is determined by calculating the ratio of
successful test episodes to the total number of test episodes. SPL takes
into account both the Success and path length. When there are M
episodes, SPL = % Z,’Z Y m, where /; is the length of the shortest
path from goal to target, p; is the length of the path taken by the
agent, and Y; is the binary indicator of Success for ith episode. Finally,
DTS is the L, distance (measured in m) between the agent and the
success threshold (1.0m) of the goal object at the end of the episode, as
described in [35].

Implementation details. To construct SEA, we examined ten episodes
from each train scene, for a total of 610 episodes. The maximum
number of time steps was set to 500, and the environment was explored
randomly. For object detection, we trained a MaskRCNN [31] model to
identify 40 object categories in MP3D environments. Our method does
not construct a metric map, thus a different stopping criterion was used
compared to metric map-based methods. If an object is detected from
a distance and exceeds a target object detection score threshold, the
agent approaches the object and checks whether it is the target object.
If the object detection score is lower after the encounter, it is assumed
that it is not the target. The object feature with the highest detection
score along the approaching path is stored in the checked object list.
If a detected target object is highly similar to the checked objects, it is
not rechecked, as it has already been searched. Additional details can
be found in Section 1 of the supplementary material.

4.3. Results

SEA outperforms navigation baselines. Our SEA method sets a new
benchmark by surpassing all previous state-of-the-art baseline meth-
ods on the MP3D dataset’s validation split, as detailed in Table 1.
This achievement encompasses end-to-end reinforcement learning (RL),
metric map-based baselines, and graph map-based methods, particu-
larly in terms of Success and DTS metrics. Remarkably, SEA demon-
strates a staggering 926.3% improvement in Success compared to the
behavior cloning model. Furthermore, SEA outperforms the PONI[20]
by 22.64% in Success and by 13.20% in SPL, thanks to its development
of more efficient pathways. While PONI[20] is highly reactive and ex-
cels in exploration with its frontier-based path generation, it falls short
in exploitation; in contrast, SEA uses topological maps for long-term
planning, allowing it to create more effective routes through better
exploitation. When compared to the SemExp + SI[16] model, which
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Fig. 6. Ablation study on pose sensor noises.

combines an abstract model with a semantic exploration approach,
SEA increases Success by 12.4%. This is particularly notable given
that SEA does not use global pose information and is trained without
interactive reinforcement learning. SEA outperforms SemExp[16] in
terms of Success but has slightly lower SPL (by 1.4 percentage points)
due to its adaptability. This adaptability allows SEA to eventually locate
the object, even if it initially follows inefficient routes. In contrast,
SemExp[16] relies on a highly accurate metric map and a perfect
pose sensor, making it very efficient at following the optimal path.
However, if SemExp[16] is led astray onto an incorrect path, it lacks
the mechanism to update and correct itself, making it difficult to locate
the object. SEA’s ability to adapt and correct its course enables higher
success rates, even though this sometimes means taking longer and less
efficient paths, resulting in lower SPL performance.

SEA has low computational requirements. The place encoder can be
trained within a day using a single GPU. Constructing SEA takes about
10 h with a single GPU. During the inference, a GPU with 3000 MB
memory is enough to run the trained encoder and detector. Our SEA
has the lowest cost, three times less than the non-interactive SoTA
baseline [20], as demonstrated in Fig. 5.

SEA is robust to pose noises. SEA demonstrates enhanced robustness to
pose sensor noise by utilizing place reachability for long-term planning
instead of building a metric map. As shown in Fig. 6, SEA experiences
a modest performance drop in Success, with a 10% decrease at a noise
level of 10 and only a 0.77% reduction at noise level 20, despite
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Table 1
Habitat ObjectNav results on MP3D. We report the results from the top-performing
methods.

Method Pose noise MP3D (val)

Success T SPL 1 DTS |
BC X 3.8 2.1 7.5
DDPPQ [27] X 8.0 1.8 6.9
Red- X 34.6 7.9 -
Rabbit
[21]
THDA [19] X 28.4 11.0 5.6
FBE [23] X 22.7 7.2 6.7
ANS [14] X 27.3 9.2 5.8
PONT [20] X 31.8 121 5.1
ANS + SI X 27.9 13.1 6.1
[16]
SemExp + X 34.7 15.1 5.8
ST [16]
SEA (ours) 39.0 13.7 5.0
SEA  w/o 33.3 13.6 5.7
Update

significant pose sensor interference. Here, the noise levels are indica-
tive of real-world scenarios, with noise level 1 mimicking common
robotic system disturbances and higher levels representing more severe
interference. In contrast, the SemExp model shows a marked decline
in efficiency—42% at noise level 4 and 64% at noise level 10, further
deteriorating with higher noise levels. This emphasizes SEA’s ability to
maintain efficiency through consistent replanning, leveraging its global
policy model effectively, even when local paths are obscured by noise.
These results highlight SEA’s superior adaptability over traditional
metric map-based approaches that rely on precise pose sensors.

Semantic information helps to improve localization. The accumulated
graph data serves as a form of memory that integrates various pieces of
semantic information. To determine whether this accumulated seman-
tic information is indeed beneficial, we employ a trained network with
attached probes to evaluate its utility for localization purposes. The
localization probe network comprises Graph Neural Networks (GNNs)
and transformer decoder networks. These networks are trained with
the ground truth location coordinates (x, y). After training, the per-
formance is assessed on a test set by calculating the distance between
the predicted and actual locations.

Upon analyzing the localization results Table 2, it is evident that
our SEA method, utilizing inputs images (I), objects (0), and places
(P), exhibits superior performance in both Acc@0.5 m and Acc@1 m
metrics with scores of 40.4 and 73.1, respectively. The Acc@l m
metric signifies the average accuracy of distance calculations within a
1-m range. If the calculated distance is accurate within this range, an
accuracy score of 1 is assigned, while inaccuracies are denoted as 0.
When the performance enhancement of SEA is calculated in terms of
percentage increase, we observe substantial improvements over other
methods. Specifically, compared to NRNS [25], SEA demonstrates an
extraordinary increase of approximately 285% in Acc@0.5 m. In com-
parison to VGM [18], SEA shows a noticeable improvement as well.
The TSGM [17] method, with inputs I and O, ranks second to SEA,
yet SEA still surpasses it in terms of accuracy. To summarize, these
results not only indicate the dominance of SEA in localization accuracy,
particularly within a 1-m range, but also emphasize the consider-
able performance enhancement achieved by incorporating semantic
knowledge.

Relation update is effective on adapting to unseen environment. The ef-
fectiveness of adapting to the unseen environment through relation
updates is demonstrated in the results of an ablation study presented in
the second row from the bottom of Table 1. As new place connections
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Table 2
Localization results.
Method Input Acc@0.5 m 1 Acc@l m 1
NRNS [25] I 10.5 66.5
VGM [18] I 36.9 62.7
TSGM [17] I+0 38.9 65.1
SEA I+O+P 40.4 73.1
Table 3
Impact of place info.
SEA ablations MP3D (val)
Subgoal Stop Success T SPL 1 DTS |
X X 29.2 11.9 6.1
X 36.4 14.2 5.3
39.0 13.7 5.0

or place-object connections arise during testing, the probability distri-
bution is updated at each step of the current episode. This acquired
connection information is utilized solely within the episode and is
not stored for future use. The experiment yielded a 17.1% increase
in success rate compared to the case where no episodic update was
applied. Notably, SPL only improved by 0.7%. This is likely due to the
episodic update altering the posterior distribution. The agent initially
navigates to the location where the target object is most likely to be
found and checks for its presence. If the object is not discovered in the
initial place cluster, the agent may become stuck. However, the relation
update weakens the connection between the target place cluster and
the target object, allowing the agent to replan and reach the next most
connected place cluster. As the agent successfully finds the object by
moving to the next place cluster, SPL decreases as the path length of
the successful path becomes longer.

Place cluster is useful for planning. We evaluated the impact of place-
specific information in the planning process using a model that ran-
domly designates subgoals. In this context, “Subgoal” refers to the
place-based subgoal selection method, which strategically enhances
reachability based on place connections. As delineated in Table 3, the
implementation of this subgoal selection method resulted in quantifi-
able improvements. Specifically, success rates increased by 24.7%, and
the SPL metric concurrently rose by 19.3%. The term “Stop” denotes
the place-based stop mechanism, a model variant that facilitates ter-
mination before reaching the predetermined target place cluster. The
examination of this mechanism revealed distinct effects. The success
rate decreased by 7.1%. In conclusion, the use of place clustering proves
to be advantageous for the planning process.

SEA can choose different trajectories based on different goals. This ex-
periment demonstrates that the path is contingent upon the chosen
goal, with the starting point fixed and goal categories varied. In Fig. 7,
the yellow star marks the starting point, and the red region indicates
the goal boundary (1 m radius), solely for visualization. The figure
shows trajectories for six object goals: fireplace, cabinet, chair, chest
of drawers, bathtub, and bed. Each trajectory adapts to its respective
target. Detailed analysis is available in the supplementary material.

5. Visualization

Construction of SGMs. The process of constructing a SGM is depicted in
Fig. 8. A SGM integrates place graphs, image graphs, and object graphs.
In this representation, image nodes are depicted as circles. Their colors
correspond to the respective place clusters. Object nodes are depicted as
triangles. The colors of these nodes indicate object categories, matching
the colors of the bounding boxes in the panoramic RGB image. For
clarity, connections between image nodes and object nodes have been
omitted in the visualization. It is important to note that top-down maps
and the positions of image and object nodes are utilized solely for
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Goal: fireplace
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Goal: cabinet

Goal boundary

i} Start position

Fig. 7. Learning semantic relationships. The figure illustrates how SEA can identify efficient paths by leveraging semantic relationships. It shows the trajectories for six target
objects: a fireplace, a cabinet, a chair, a chest of drawers, a bathtub, and a bed. These trajectories demonstrate various pathways that are adapted to each specific target object.
The starting point is marked by a yellow star, while the goal boundary is represented by a red region, indicating that the goal is within a 1-m radius.

visualization purposes and are not used as input data. Additionally, a
supplementary video is available that demonstrates the construction
of semantic graph maps, showcasing one episode across 20 training
scenes.

Example visualization of episodes. We provide an example visualization
of an episode in Fig. 9. This shows how semantic prior graphs are used
in the global policy to perform ObjectNav, where the goal is identified
as ‘bed’. The navigation process begins with the agent perceiving the
bedroom (P,) to be on the left side and the kitchen to be at the front
and right side. Based on this initial perception, the agent decides to
move left, anticipating that the target location might be there. Upon
reaching the subgoal, the agent searches for a bed but does not find
one. Consequently, the agent exits the current location and re-evaluates
the subgoal, noticing a door on the left and inferring that the target
location is likely on the left side. While proceeding towards the subgoal,
the agent eventually encounters the target object, the bed. The agent
then formulates a local plan to reach the bed. Finally, after confirming
that the location matches the intended destination, the bedroom (P;,),

the agent presses the stop button. Detailed information and additional
examples are provided in the supplementary material.

6. Conclusions and future work
6.1. Conclusions

We present SEA, a method for learning semantic relationships be-
tween places and objects in unknown environments with low compu-
tational cost. Our approach identifies the object’s location and navi-
gates using place connections. By adapting to the unseen environment
through relation updates, SEA achieves state-of-the-art results for Ob-
jectNav in MP3D. Unlike other methods are not robust to noise pose
sensor, SEA is robustly navigate environment with noisy settings. Our
method is the first to not require a global metric map for ObjectNav in
large environments like MP3D. We show that incorporating semantic
relationships improves localization and navigation tasks.
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%* Color on the image nodes indicates the place cluster

— * Color on the object nodes indicates the object category
Et - {%place’ %‘m’ %"b’ %zm’ %’0’ %P’} * Omit object node to image node connection for simplicity

Fig. 8. Example of constructing an episodic graph. While randomly investigating the surroundings, the agent accumulates an episodic graph. A place graph, an image graph,

and an object graph comprise an episodic graph. Color on the image node indicates the place cluster, circles indicate image nodes, and triangles represent object nodes.

6.2. Future work

In addition to the current approach, we propose future directions
and still open challenges:

1. Incorporating language features for 3D objects: Our proposed
method relies solely on image features to define objects. Using language
features for 3D objects could lead to more general features that can
improve object search and correlation graph connections in the metric
space.

2. Agents in dynamic environments: Recognizing changes in the
environment, such as a cup being moved from the kitchen to the living
room, can aid in task-solving. If an agent maintains memory in the
form of a graph, it can adapt much better to dynamic environments
compared to using a metric map.

3. Recognizing physical laws in the environment: To manip-
ulate objects or perform meaningful control tasks, it is necessary to
understand the physical laws governing the environment. For example,
avoiding small wooden blocks on the floor or considering the center of
mass when picking up a tool.

4. Interactive intelligence: Our method should not only rely on
its own intelligence but also interact with humans or other robots in
the environment to update the topological map. Further advancements
in these areas can lead to more robust and effective navigation and
localization in complex environments.

We believe that our proposed method is a step towards achiev-
ing this goal, and we look forward to future developments and im-
provements. Additional details can be found in the supplementary
material.
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* Goal i? Subgoal

Goal boundary

Fig. 9. Qualitative examples of navigation using SEA. When given the goal object as a bed, the agent formulates a plan to navigate to the bedroom (P),). To reach the bedroom
(P},), the agent predicts the subgoal place cluster using the categories of the initially visible objects.
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