CoRL 2022 Review Mini Conference on Robot Learning

Conference Venues

Colour meaning:

- Owen G. Glen **Building Entrance** 12 Grafton Rd
- E1
- Engineering Building 1st Entrance 5 Grafton Rd
- E2
- Engineering Building 2nd Entrance 12 Symonds St
- OGG Building 260 260 **Building 405** 405 **Building 401** 401

Addresses: 5 Grafton Rd, 12 Grafton Rd, 12 Symonds St

NFERENCE **ROBOT LEARNING** AUCKLAND, DEC 14-18, 2022

Contents

- Robot Demonstrations
- **Intersting** Papers
 - Navigation
 - Open-World Detection
 - Autonomous Vehicle
 - Manipulation
 - Inverse Reinforcement Learning
 - ETC
- Take-home Messages

Robot Demonstrations

4

Robot Demonstrations

Navigation

- BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 Everyday Activities and Realistic Simulation Oral Presentation
- LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language, Vision and Action
- Offline Reinforcement Learning for Customizable Visual Navigation Oral Presentation
- Do As I Can, Not As I Say: Grounding Language in Robotic Affordances Best Systems Paper Award Finalist

BEHAVIOR-1K: A Benchmark for Embodied AI with 1,000 Everyday Activities and Realistic Simulation

LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language, Vision and Action

Observations in Target Environment

LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language, Vision, and Action

Dhruv Shah¹⁽¹⁾, Błażej Osiński ¹⁽¹⁾ ⁽²⁾, Brian Ichter[®], Sergey Levine ⁽³⁾

⁸ UC Berkeley, [•] University of Warsaw, [®] Robotics at Google

https://sites.google.com/view/lmnav

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

OF WARSAW

Google Research

^{*t*} Equal Contribution

Offline Reinforcement Learning for Customizable Visual Navigation

- Goal is not merely to reach a particular destination without collision, but to do so while maximizing some desired utility measure.
 - obeying the rules of the road, staying in a bike lane or off the lawn, maintaining safety
- It used a topological graph as a nonparametric memory
- node to another.
- Then, finds the optimal path using Dijkstra algorithm, which maximizes the value
- Extracted meta labels, such as "sunny" and "grassy", from RGB observations and use it as additive rewards.

10

• The node in the graph represents the state and the edges represents the cumulative reward the robot will accumulate as it travels from one

Offline Reinforcement Learning for Visual Navigation

- Dhruv Shah[‡], Arjun Bhorkar[‡], Hrish Leen, Ilya Kostrikov, Nicholas Rhinehart, Sergey Levine
 - **Conference on Robot Learning (CoRL) 2022** Auckland, New Zealand

Do As I Can, Not As I Say: Grounding Language in Robotic Affordances

I spilled my drink, can you help?

Value Functions

"find a cleaner" "find a sponge" "go to the trash can" "pick up the sponge" "try using the vacuum"

SayCan

"find a cleaner" "find a sponge"

"go to the trash can" "pick up the sponge" "try using the vacuum"

I would:

- 1. find a sponge
- 2. pick up the sponge
- 3. come to you
- 4. put down the sponge
- 5. done

Supplementary Video for "Do As I Can, Not As I Say: Grounding Language in Robotics Affordances"

Robotics at Google and Everyday Robots

Open-World Detection

Semantic Abstraction: Open-World 3D Scene Understanding from 2D Vision-Language Models

Semantic Abstraction: Open-World 3D Scene Understanding from 2D Vision-Language Models

Semantic Abstraction: Open-World 3D Scene Understanding from 2D Vision-Language Models

CoRL 2022 Review

Open-Vocabulary Scene Completion

Text Input

Scene Completion

RGB-D Input

Semantic labels

Open-Vocabulary Scene Completion

Text Input

RGB-D Input

Scene Completion

What about objects that are really hard to see (i.e, visually-obscured)?

e.g., How can we tell the robot to take the

lemon on the shelf

Autonomous Vehicle

LEADER: Learning Attention over Driving Behaviors Best Paper Award Finalist

LEADER: Learning Attention over Driving Behaviors

LEADER: LEARNING ATTENTION OVER DRIVING BEHAVIORS FOR PLANNING UNDER UNCERTAINTY

Mohamad H. Danesh, Panpan Cai, David Hsu

CoRL 2022 Review

Manipulation

- Evo-NeRF: Evolving NeRF for Sequential Robot Grasping Oral Presentation
- SE(2)-Equivariant Pushing Dynamics Models for Tabletop Object Manipulations Oral Presentation

Evo-NeRF: Evolving NeRF for Sequential Robot Grasping

(A) Early Stopped Image Capture

(B) Incremental NeRF Optimization

(C) Grasp

Evo-NeRF: Evolving NeRF for Sequential Robot Grasping

(a) Full Capture Trajectory

(c) Update Trajectory

(d) Consecutive NeRF Updates

SE(2)-Equivariant Pushing Dynamics Models for Tabletop **Object Manipulations**

The pushing dynamics model needs to be equivariant to the SE(2) transformation.

 $\{\mathbf{CT}'_i\}_{i=1}^N = f(\{(\mathbf{CT}_i, \mathbf{q}_i)\}_{i=1}^N, (\mathbf{Rot}(\mathbf{\hat{z}}, \theta)\mathbf{p} + \mathbf{t_{xv}}, \mathbf{Rot}(\mathbf{\hat{z}}, \theta)\mathbf{v}))$

for all object numbers $N \leq M$ and rigid-body transformations C that have the following form

where $\operatorname{Rot}(\hat{\mathbf{z}}, \theta)$ is a 3×3 rotation matrix for rotations around z-axis and $\mathbf{t_{xy}} = (t_x, t_y, 0) \in \mathbb{R}^3$.

SE(2)-Equivariant Pushing Dynamics Models for Tabletop **Object Manipulations**

Pushing Demos

CoRL 2022 Review

Inverse Reinforcement Learning

- Training Robots to Evaluate Robots: Example-Based Interactive Reward Functions for Policy Learning 4
- Learning Agile Skills via Adversarial Imitation of Rough Partial Demonstrations **Best Paper Award Finalist**

Training Robots to Evaluate Robots: Example-Based Interactive Reward Functions for Policy Learning

Learning an interactive reward function from successful / failure cases

Training Robots to Evaluate Robots: Example-Based Interactive Reward Functions for Policy Learning

ETC

- DayDreamer: World Models for Physical Robot Learning
- Watch and Match: Supercharging Imitation with Regularized Optimal Transport *Best Paper Award Finalist*
- Proactive Robot Assistance via SpatioTemporal Object Modeling
- Real-time Mapping of Physical Scene Properties with an Autonomous Robot Experimenter Oral Presentation
- Temporal Logic Imitation: Learning Plan-Satisficing Motion Policies from Demonstrations Oral Presentation

DayDreamer: World Models for Physical Robot Learning

A1 Quadruped Walking UR5 Multi-Object Visual Pick Place

Learned from Scratch in the Real World

XArm Visual Pick and Place

Sphero Ollie Visual Navigation

Watch and Match: Supercharging Imitation with Regularized Optimal Transport

Stack Cups

Open Box

Press Switch

Pouring Almonds

Real-time Mapping of Physical Scene Properties with an Autonomous Robot Experimenter

Iain Haughton, Edgar Sucar, Andre Mouton, Edward Johns, Andrew J. Davison

0

Dyson Technology Ltd. Imperial College

Temporal Logic Imitation: Learning Plan-Satisficing Motion Policies from Demonstrations

Collecting Demonstrations for Scooping Task

Take-home Messages

- CoRL: the best conference for robot learning.
- Large language model is an inevitable technology.

Oral & Poster Presentation

Signal Semantic Graph Memory RLAB or Image-Goal Navigation CoRL 2022 (oral)

Obin Kwon, Hwiyeon Yoo, Yunho Choi, Jeongho Park, and Songhwai Oh ent of Electrical and Computer Engineering, Seoul National University

Paper 471: Topological Semantic Graph Memory for Image-Goal Navigation

Topological Semantic Graph Memory for Image-Goal Navigation CoRL 2022 (oral)

Nuri Kim, Obin Kwon, Hwiyeon Yoo, Yunho Choi, Jeongho Park, and Songhwai Oh Department of Electrical and Computer Engineering, Seoul National University

CoRL 2022 Review

Thank you for your attention

