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Image Goal Navigation RUAB

Source Image Goal Image

« Agent observations are panoramic images
* Take actions to navigate to the goal location

* Take the stop action at the goal location

Slide from Chaplot, et al. "Neural Topological SLAM for Visual Navigation." CVPR 2020
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Graph Memory

A vertex represents an area in the environment

An edge represents the relationship between two
vertices, such as reachability and proximity
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Semantic Contexts

Why landmark knowledges are better integrated into graph memory?
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Semantic Contexts: Object Context

Neighboring objects make an object unique
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Semantic Contexts: Place-Object Context
Place and Obje are highly related

B

Oven
Dining table
Refrigerator Kitchen

How to embed landmark knowledge into topological graph memory?
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Graph Builder

Cross Graph Mixer

Memory Decoder
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Graph Builder

Current Obs
;

Target
Lg

* Note that floorplan and node positions are only used for illustration and not given as input to agent
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Graph Builder

Current Obs
;

Object Node

Image Node

* Note that floorplan and node positions are only used for illustration and not given as input to agent
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Graph Builder: Image Graph

Current Obs
;

Object Node

Image Node

* Note that floorplan and node positions are only used for illustration and not given as input to agent
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Graph Builder: Image Graph

Back Propagation (
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Prototypical Contrastive Learning

VGM (2

[1] Li, Junnan, et al. "Prototypical contrastive learning of unsupervised representations.” ICLR 2021
[2] Obin Kwon, et al. "Visual graph memory with unsupervised representation for visual navigation." ICCV 2021.
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Graph Builder: Object Graph

Class 1 Class 2

Normahzed
Embeddings

Contrastive Learning
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Graph Buillder: Object Graph %LR”-AB
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Collect an object from d|fferent wewpomts

SCAL L
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Graph Builder: Object Graph - RUEAB

Top 5 objects In the environment (among ~7000 candidates)
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The object encoder finds the query objects in various viewpoints
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Graph Buillder: Object Graph %RU_AB

Object Memory
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Observation

st

Object Nodes: Individual objects

* Color represents the 3-dim tsne feature of the place

Detected objects are connected to the current node ®

Image Nodes

N> Agent’s Current Image Node
/. Object Nodes

Topological Semantic Graph Memory for Image-Goal Navigation
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Graph Builder: Object Graph “f@R”-AB

Similarity Is high and the category Is the same. ObJeCtMemory

.7 ltindicates that the object is already in the memory.
Since detection score is higher than the memory node,
It Is used to update the memory node.
The node Is connected to the lastly localized image node.

“-~._  Observation

S o o & Similarity with memory is low.
It Is added to a memory as a new node
and connected to the lastly localized image node.

-

Image Nodes

N ¥ Agent’s Current Image Node
/. Object Nodes

Topological Semantic Graph Memory for Image-Goal Navigation

* Color represents the 3-dim tsne feature of the place
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Graph Buillder: Object Graph
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A Image atfinity matrix

A,p: object affinity matrix

A.: image—object affinity matrix
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Graph Builder: Object Graph

Ayp = Ag(Aim T I)Ac

A Image atfinity matrix
A,p: object affinity matrix

A.: image—object affinity matrix
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Cross Graph Mixer

Image graph

Mixer

Cross Graph

Object graph
how, (4
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Cross Graph Mixer

Image graph

Cross Graph
Mixer

Exchange nodes

Object grapb
hOhl ho
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Refrigerator Kitchen
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Cross Graph Mixer

Cross Graph
Mixer

> miy mip

Image Memory

Exchange nodes — 1110 mo

ObJeCt graphh l Object.;\;lemory

mo hOi‘H

Object node
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Memory Decoder

> miy mipy
Image Memory

Object Memory :
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M/ Recurrent

Memory E Selected Agtion
Decoder Memory Policy
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[2] Obin Kwon, et al. "Visual graph memory with unsupervised representation for visual navigation." ICCV 2021.
Topological Semantic Graph Memory for Image-Goal Navigation
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Real-World Demonstration

Robot specification
A

Richo Theta 360° Camera (RGB sensor)

Intel Core 17 and GeForce RTX 2080

il
-
1

Height: 1.2m I

Jackal UGV from Clearpath
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Real-World Demonstration %E*R”-AB

Observation

Start Position
B Goal Position

* We estimated the robot and object locations to draw graphs on the map
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Method Memory No Pose Object Kasy Medium Hard Overall
Success SPL  Success SPL  Success SPL | Success SPL
RGBD + RL [26] implicit X X 72.5 69.5 53.1 48.6 22.3 17.7 49.3 45.3
ANS [17] metric X X 74.2 20.5 68.4 22.9 29.9 11.0 57.5 18.1
Exp4nav [3] metric X X 70.2 61.8 60.6 52.4 46.9 385 | 59.2 50.9
SMT [8] graph X X 81.9 17.4 65.6 52.2 55.6 39.7 67.7 56.4
Neural Planner [20] graph X X 71.7 41.3 64.7 38.5 42.0 27.0 59.5 35.6
SPTM [9] graph X 66.5 40.6 64.2 38.5 42.1 25.4 57.6 34.8
VGM [18] graph X 86.1 79.6 81.2 68.2 | 60.9 45.6 76.1 64.5
TSGM (Ours) graph 91.1 383.5 82.0 68.1 70.3 50.0 81.1 67.2

Topological Semantic Graph Memory for Image-Goal Navigation
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Path Type | Method Easy Medium Hard Overall o

Success SPL  Success SPL  Success SPL | Success ! SPL
NRNS [27] 67.1 57.8 524 41.2 326 224 50.7 1 40.5
Straight VGM [18] 81.0 544 82.0 69.9 67.3 544 76.7 . 59.6
TSGM (Ours) 944 92.1 92.6 84.3 70.3 628 85.7 79.7
NRNS [27] 31.7 13.0 29.0 13.6 19.2 104 26.6 1 12.3
Curved VGM [18] 81.0 45.5 78.8 59.5 62.2 469 74.0 1 50.6
TSGM (Ours) 93.6 91.0 89.7 77.8 64.2 55.0 825" 74.1

SPL: Success weighted by normalized inverse Path Length

l;

Topological Semantic Graph Memory for Image-Goal Navigation




Ablation Study on Cross Graph Mixer -

Update | Success SPL
No 0.533 0.393
Visual 0.578 0.446
Object 0.613 0.458
Cross 0.627 0.471

Ablation study on Cross graph mixer updates

Topological Semantic Graph Memory for Image-Goal Navigation
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Object Goal Navigation

Observation
(RGBD)

Pose Sensor |

Goal: Chair

Slide from Chaplot, CMU Ph.D. Thesis Defense: Building Intelligent Autonomous Navigation Agents

Topological Semantic Graph Memory for Image-Goal Navigation 30
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Results
Method No Pose | Success Rate () SPL (1) DTS ({)
BC X 12.2 8.3 3.90
DDPPO [1] X 15.0 10.7 3.24
FBE [2] X 64.3 28.3 1.78
Active Neural SLAM [3] X 67.1 34.9 1.66
SemExp [4] X 71.7 39.6 1.39
PONI [5] X 73.6 41.0 1.25
TSGM 75.1 32.7 1.48
Method No Pose | Success Rate () SPL (T) DTS (})
BC X 12.2 8.3 3.90
DDPPO [1] X 3.8 2.1 7.5
Red-Rabbit [6] X 34.6 1.8 -
THDA [7] X 28.4 7.9 5.6
FBE [2] X 20.0 7.6 6.5
Active Neural SLAM [3] X 21.2 94 6.3
PONI [5] X 27.8 12.0 5.6
TSGM 46.1 15.3 4.7

Object Goal Navigation Results on Gibson and MP3D dataset

Topological Semantic Graph Memory for Image-Goal Navigation
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Summary & Dirty Laundry R”-AB

= | SGM made robots understand the relationship between an object and a place.

> A robot can find efficient paths if it knows “the coffee machine” tends to be in the “kitchen,” not
in a “bedroom.”

a 1SGM Integrates semantic information to topological graph memory,
outperforming SOTA methods on image goal navigation.

> To the best of our knowledge, we firstly constructed object graph on the topological graph.

o Dirty Laundry

* Since It does not use any metric map, a robot often bumps into the corner.
* The image nodes do not exactly represent the semantic places, such as a kitchen.

Topological Semantic Graph Memory for Image-Goal Navigation
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Topological Semantic Graph Memory

Topological Semantic Graph
Memory for Image-Goal
Navigation
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Webpage: https://bareblackfoot.github.io/TopologicalSemanticGraphMemory

Nuri Kim

Webpage: http://bareblackfoot.qgithub.io

Email nuri.kim@rllab.snu.ac.kr

Twitter: @nurikimmel
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