Topological Semantic Graph Memory for Image-Goal Navigation CORL 2022 (oral)

Nuri Kim, Obin Kwon, Hwiyeon Yoo, Yunho Choi, Jeongho Park, and Songhwai Oh

Department of Electrical and Computer Engineering, Seoul National University /

Image Goal Navigation

Source Image

- Agent observations are panoramic images Take actions to navigate to the goal location Take the stop action at the goal location

Topological Semantic Graph Memory for Image-Goal Navigation

Goal Image

Slide from Chaplot, et al. "Neural Topological SLAM for Visual Navigation." CVPR 2020

Graph Memory

Topological Semantic Graph Memory for Image-Goal Navigation

A vertex represents an area in the environment

An edge represents the relationship between two vertices, such as reachability and proximity

Semantic Contexts

Why landmark knowledges are better integrated into graph memory?

Semantic Contexts: Object Context Robot Learning Laboratory

Neighboring objects make an object unique

Semantic Contexts: Place-Object Context Place and Objects are highly related

Refrigerator

Topological Semantic Graph Memory for Image-Goal Navigation

Kitchen

How to embed landmark knowledge into topological graph memory?

Topological Semantic Graph Memory Robot Learning Laboratory

Graph Builder

Object Node

Cross Graph Mixer

Query

Memory Decoder

Memory attention module

Graph Builder

 $\mathcal{G} = \{ \bullet \mathcal{V}_{im}, \blacktriangle \mathcal{V}_{ob}, \mathscr{I}_{im}, \mathscr{I}_{c} \}$

* Note that floorplan and node positions are only used for illustration and not given as input to agent

Graph Builder

Image Node

Topological Semantic Graph Memory for Image-Goal Navigation

* Note that floorplan and node positions are only used for illustration and not given as input to agent

Graph Builder: Image Graph

 $\mathcal{G} = \{ \bullet \mathcal{V}_{im}, \blacktriangle \mathcal{V}_{ob}, \mathscr{I}_{im}, \mathscr{I}_{c} \}$

Image Node

Topological Semantic Graph Memory for Image-Goal Navigation

* Note that floorplan and node positions are only used for illustration and not given as input to agent

Graph Builder: Image Graph

Prototypical Contrastive Learning [1]

[1] Li, Junnan, et al. "Prototypical contrastive learning of unsupervised representations." ICLR 2021 [2] Obin Kwon, et al. "Visual graph memory with unsupervised representation for visual navigation." ICCV 2021.

Topological Semantic Graph Memory for Image-Goal Navigation

VGM [2]

Contrastive Learning

Topological Semantic Graph Memory for Image-Goal Navigation

Topological Semantic Graph Memory for Image-Goal Navigation

Query

Top 5 objects in the environment (among ~7000 candidates)

Topological Semantic Graph Memory for Image-Goal Navigation

Observation

Object Nodes: Individual objects

Detected objects are connected to the current node

Topological Semantic Graph Memory for Image-Goal Navigation

Object Memory

* Color represents the 3-dim tsne feature of the place

Similarity is **high** and the category is the same. It indicates that the object is **already in the memory**. Since detection score is higher than the memory node, It is used to update the memory node.

The node is connected to the lastly localized image node.

Observation

Similarity with memory is low. It is added to a memory as a new node * Color represents the 3-dim tsne feature of the place and connected to the lastly localized image node.

Topological Semantic Graph Memory for Image-Goal Navigation

Object Memory

Image Nodes

Agent's Current Image Node

Object Nodes

$$A_{ob} = A$$

Topological Semantic Graph Memory for Image-Goal Navigation

17

$A_c^T (A_{im} + I) A_c$

A_{im}: image affinity matrix A_{ob}: object affinity matrix A_c: image–object affinity matrix

$$A_{ob} = A$$

Topological Semantic Graph Memory for Image-Goal Navigation

$A_c^T (A_{im} + I) A_c$

A_{im}: image affinity matrix A_{ob}: object affinity matrix A_c: *image–object affinity matrix*

Topological Semantic Graph Memory for Image-Goal Navigation

Refrigerator

Kitchen

Graph

SSO

Mixer

 $\mathcal{G} = \{ \bullet \mathcal{V}_{im}, \blacktriangle \mathcal{V}_{ob}, /\mathcal{E}_{im}, /\mathcal{E}_c \}$

Memory Decoder

0	r	a	t	0	r	Y

Demo Video

TSGM (Ours)

[2] Obin Kwon, et al. "Visual graph memory with unsupervised representation for visual navigation." ICCV 2021. Topological Semantic Graph Memory for Image-Goal Navigation

VGM [2]

Real-World Demonstration

Robot specification

Height: 1.2m

Real-World Demonstration

Start Position **Goal Position**

* we estimated the robot and object locations to draw graphs on the map

Topological Semantic Graph Memory for Image-Goal Navigation

Goal *7.55m

Observation

Results

Method	Memory	No Pose	Obiect	Easy		Medium		Hard		Overa	
	o_J		o »Jeee	Success	SPL	Success	SPL	Success	SPL	Success	
RGBD + RL [26]	implicit	×	×	72.5	69.5	53.1	48.6	22.3	17.7	49.3	
ANS [17]	metric	×	×	74.2	20.5	68.4	22.9	29.9	11.0	57.5	
Exp4nav [5]	metric	×	×	70.2	61.8	60.6	52.4	46.9	38.5	59.2	
SMT [8]	graph	X	X	81.9	77.4	65.6	52.2	55.6	39.7	67.7	
Neural Planner [20]	graph	×	×	71.7	41.3	64.7	38.5	42.0	27.0	59.5	
SPTM [9]	graph	 Image: A set of the set of the	×	66.5	40.6	64.2	38.5	42.1	25.4	57.6	
VGM [18]	graph		X	86.1	79.6	81.2	68.2	60.9	45.6	76.1	
TSGM (Ours)	graph	/	/	91.1	83.5	82.0	68.1	70.3	50.0	81.1	

Results

Path Type	Method	Easy		Medium		Hard		Overall	
<i>J</i> P ·		Success	SPL	Success	SPL	Success	SPL	Success	S
Straight	NRNS [27]	67.1	57.8	52.4	41.2	32.6	22.4	50.7	4
	VGM [18]	81.0	54.4	82.0	69.9	67.3	54.4	76.7	5
	TSGM (Ours)	94.4	92.1	92.6	84.3	70.3	62.8	85.7	7
	NRNS [27]	31.7	13.0	29.0	13.6	19.2	10.4	26.6	1
Curved	VGM [18]	81.0	45.5	78.8	59.5	62.2	46.9	74.0	5
	TSGM (Ours)	93.6	91.0	89.7	77.8	64.2	55.0	82.5	7

SPL: Success weighted by normalized inverse Path Length $\frac{1}{N}\sum_{i=1}^{N}S_{i}\frac{l_{i}}{\max(p_{i},l_{i})}$

Ablation Study on Cross Graph Mixer Rubor Learning Laboratory

Update	Success	SPL
No	0.533	0.393
Visual	0.578	0.446
Object	0.613	0.458
Cross	0.627	0.471

Ablation study on Cross graph mixer updates

Object Goal Navigation

Input

Slide from Chaplot, CMU Ph.D. Thesis Defense: Building Intelligent Autonomous Navigation Agents Topological Semantic Graph Memory for Image-Goal Navigation

Output

Goal: Chair

Results

Method	No Pose	Success Rate (†)	SPL (†)	DTS (\downarrow)
BC	X	12.2	8.3	3.90
DDPPO [1]	X	15.0	10.7	3.24
FBE [2]	X	64.3	28.3	1.78
Active Neural SLAM [3]	X	67.1	34.9	1.66
SemExp [4]	X	71.7	39.6	1.39
PONI [5]	X	73.6	41.0	1.25
TSGM		75.1	32.7	1.48
Method	No Pose	Success Rate (†)	SPL (†)	DTS (↓)
BC	X	12.2	8.3	3.90
BC DDPPO [1]	X	12.2 3.8	8.3 2.1	3.90 7.5
BC DDPPO [1] Red-Rabbit [6]	X X X	12.2 3.8 34.6	8.3 2.1 1.8	3.90 7.5 -
BC DDPPO [1] Red-Rabbit [6] THDA [7]	X X X X	12.2 3.8 34.6 28.4	8.3 2.1 1.8 7.9	3.90 7.5 - 5.6
BC DDPPO [1] Red-Rabbit [6] THDA [7] FBE [2]		12.2 3.8 34.6 28.4 20.0	8.3 2.1 1.8 7.9 7.6	3.90 7.5 - 5.6 6.5
BC DDPPO [1] Red-Rabbit [6] THDA [7] FBE [2] Active Neural SLAM [3]		12.2 3.8 34.6 28.4 20.0 21.2	8.3 2.1 1.8 7.9 7.6 9.4	3.90 7.5 - 5.6 6.5 6.3
BC DDPPO [1] Red-Rabbit [6] THDA [7] FBE [2] Active Neural SLAM [3] PONI [5]		12.2 3.8 34.6 28.4 20.0 21.2 27.8	8.3 2.1 1.8 7.9 7.6 9.4 12.0	3.90 7.5 - 5.6 6.5 6.3 5.6

Topological Semantic Graph Memory for Image-Goal Navigation

Object Goal Navigation Results on Gibson and MP3D dataset

Summary & Dirty Laundry

- ISGM made robots understand the relationship between an object and a place.
 - A robot can find efficient paths if it knows "the coffee machine" tends to be in the "kitchen," not in a "bedroom."
- ISGM Integrates semantic information to topological graph memory, outperforming SOTA methods on image goal navigation.
 - To the best of our knowledge, we firstly constructed object graph on the topological graph.
- Dirty Laundry
 - Since it does not use any metric map, a robot often bumps into the corner.
 - The image nodes do not exactly represent the semantic places, such as a kitchen.

Topological Semantic Graph Memory for Image-Goal Navigation

This work proposes an approach to increr mantic graph memory and use the collected memory for image go ion. Given a target image to search, an embodied robot utilizes t

Topological Semantic Graph Memory for Image-Goal Navigation

CoRL 2022

Webpage: https://bareblackfoot.github.io/TopologicalSemanticGraphMemory

Nuri Kim		
Webpage: <u>k</u>	<u>11</u>	
Email r	ור	
Twitter:	<u>a</u>	

Nuri Kim, Obin Kwon, Hwiyeon Yoo, Yunho Choi, Jeongho Park, and Songhwai Oh

ttp://bareblackfoot.github.io uri.kim@rllab.snu.ac.kr nurikimmel

