

Semantic Visual Navigation for Embodied Agents: A Graph-Based Approach

Nuri Kim

Seoul National University February 2, 2023

Visual Intelligence: Passive Learning

Semantic Segmentation Classification + Localization

RII AB

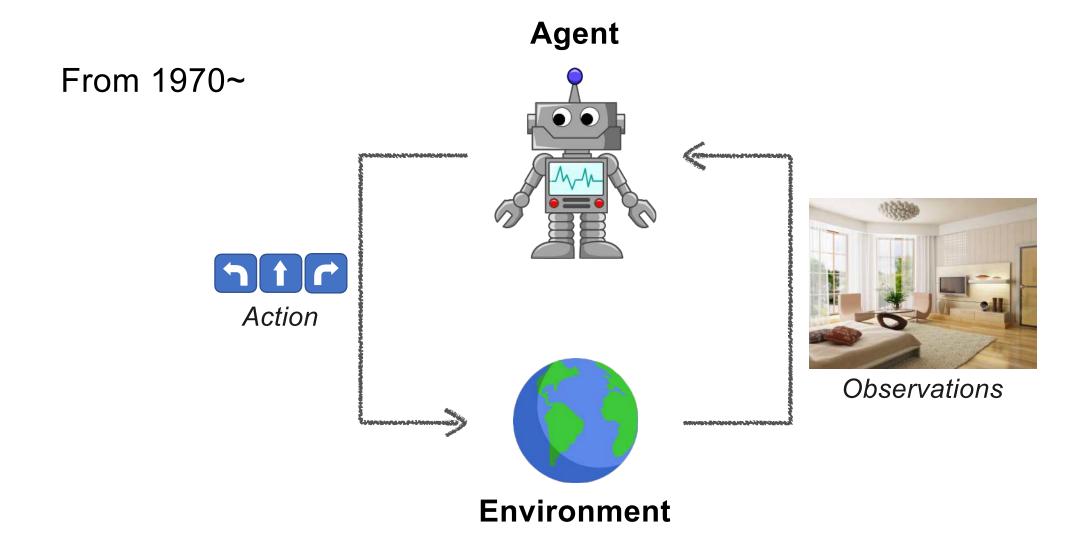
Robot Learning Laboratory

GRASS, CAT, TREE, SKY САТ

Object Detection

DOG, DOG, CAT

DOG, DOG, CAT



source: Habitat

source: D. Klein, P.Abbeel

Simulators

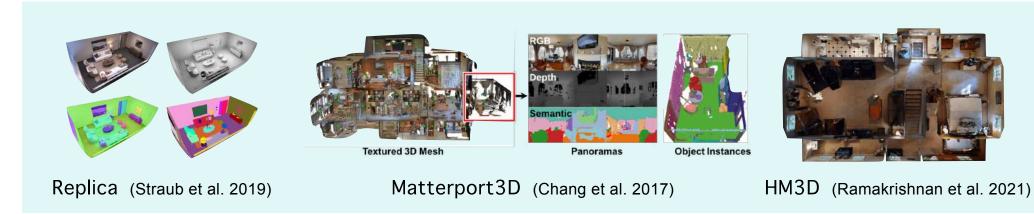
AI2-THOR (Kolve et al. 2017)

Gibson (Zamir et al. 2018)



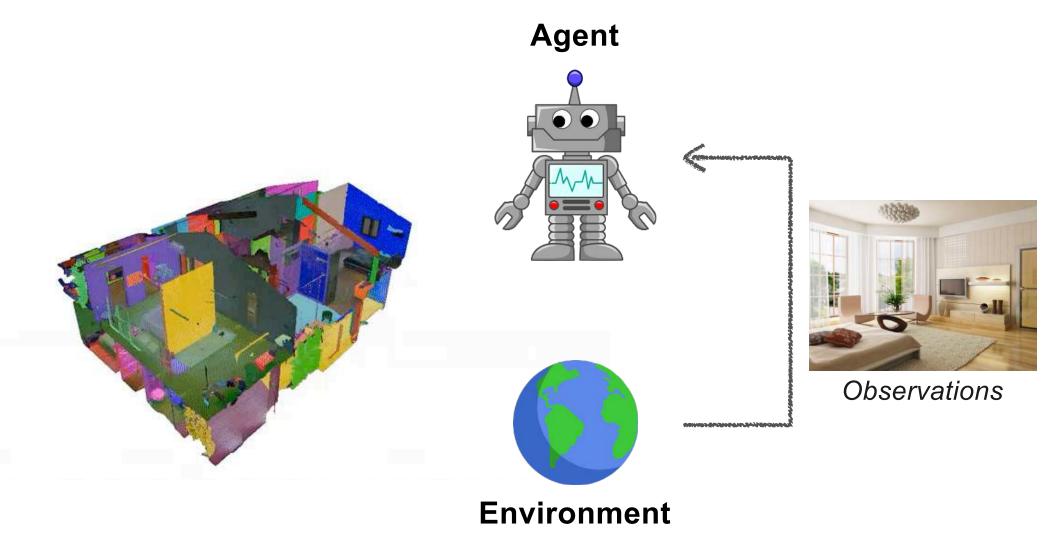
Habitat (Savva et al. 2018)

Datasets



source: Habitat-Sim

Semantic Understanding

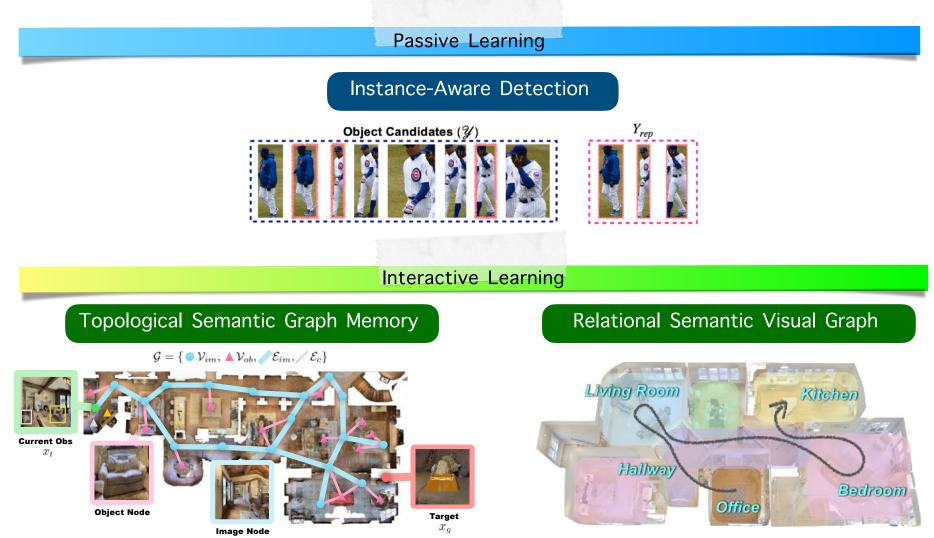


Relationship of Data

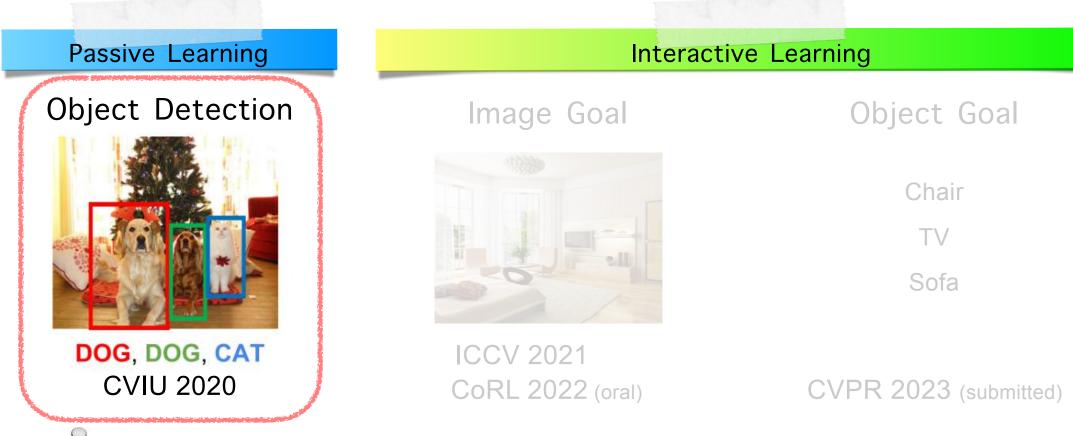
Target

Building navigation agents capable of semantic understanding by learning relationship of data using graphs

Roadmap



Roadmap



Nuri Kim, Donghoon Lee, and Songhwai Oh., "Learning Instance-Aware Object Detection Using Determinantal Point Processes," Computer Vision and Image Understanding (CVIU-20)

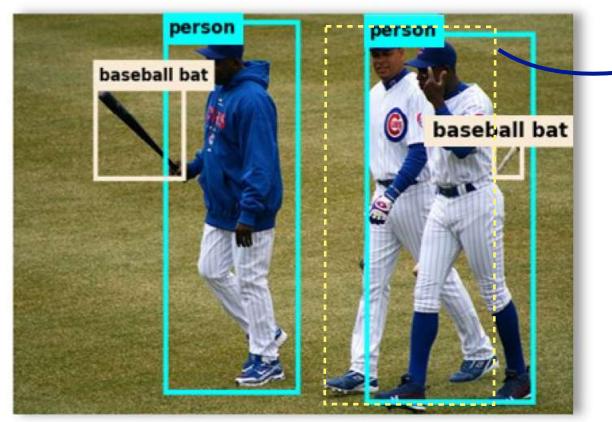
Detection on Crowd Scene

Goal: Find individual instances when they are overlapped



Detection on Crowd Scene

Non Maximum Suppression (NMS^[1]) : Not robust for detecting overlapped objects



Detection results from an object detector with NMS

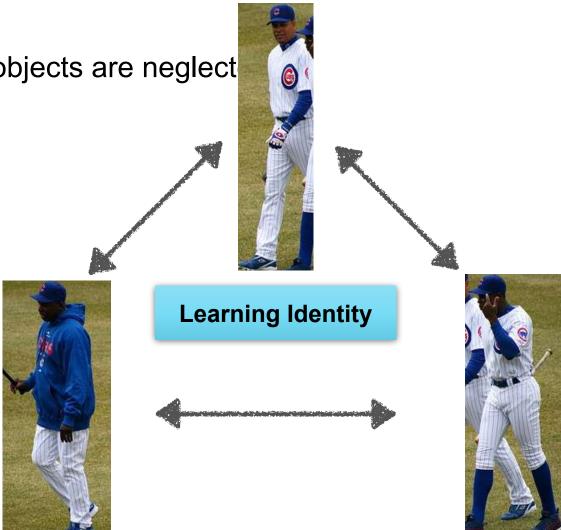
Missing detections due to overlapped bounding boxes.

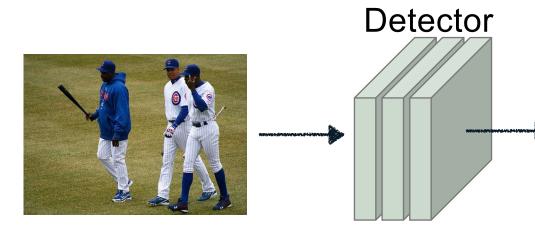
Algo	rithm 1 Non-Max Suppression
1: p	rocedure NMS(B,c)
2:	$B_{nms} \leftarrow \emptyset$
3:	for $b_i \in B$ do
4:	$discard \leftarrow False$
5:	for $b_j \in B$ do
6:	if $\mathrm{same}(b_i,b_j) > \boldsymbol{\lambda_{nms}}$ then
7:	if $score(c, b_j) > score(c, b_i)$ then
8:	$discard \leftarrow \text{True}$
9:	if not discard then
10:	$B_{nms} \leftarrow B_{nms} \cup b_i$
11:	return B _{nms}

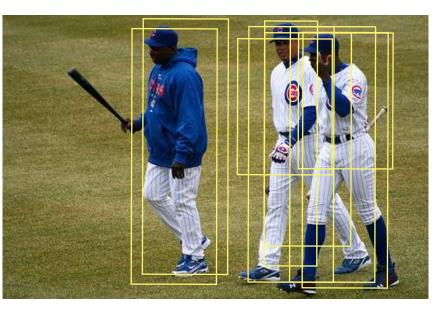
[1] Neubeck, Alexander, and Luc Van Gool. "Efficient non-maximum suppression." International Conference on Pattern Recognition (ICPR). 2006.

RLAB Robot Learning Laboratory

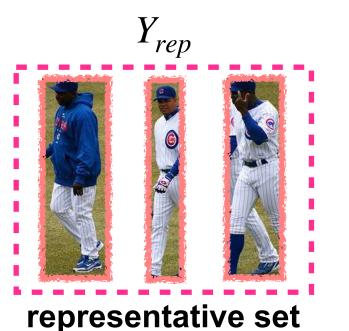
Non Maximum Suppression (NMS): Overlapped objects are neglect







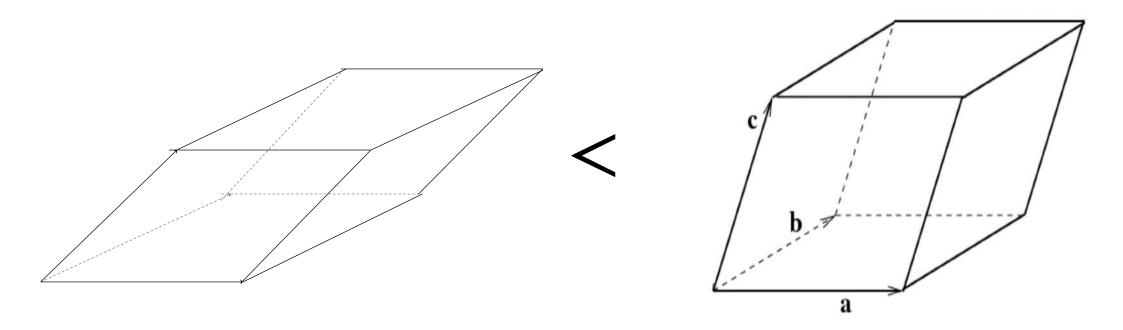
Object Candidates



Learning Instanceness by increasing the DPP probability of representative set.

Determinantal Point Processes

For selecting **diverse** and **qualitative** objects



The volume of vectors are bigger as the vectors are diverse and qualitative.

- Determinantal point process (DPP) defines probability to every subset of a finite set $\mathcal{S} = \{1,...,N\}$ of cardinality $|\mathcal{S}| = N$.
- The kernel L is defined using quality (Q) and similarity (S) matrices.

$$\mathbf{L} = Q \odot S = qq^T \odot \phi \phi^T,$$

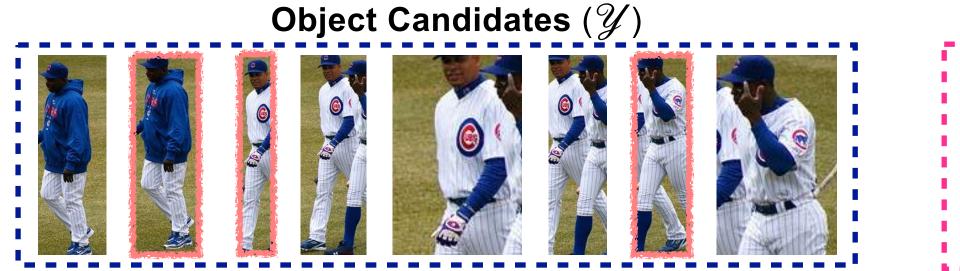
where $q \in \mathbb{R}^N_+, \phi \in \mathbb{R}^{N \times D}$ and *S* is a cosine similarity matrix.

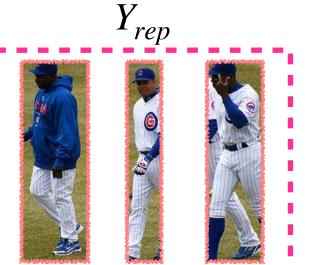
• Based on a positive semi-definite kernel $\mathbf{L} \in \mathbb{R}^{N \times N}$, the probability of selecting a set Y is,

$$\mathcal{P}(Y) = \frac{\det(\mathbf{L}_Y)}{\left[\sum_{A \subseteq S} \det(\mathbf{L}_A)\right]} = \frac{\det(\mathbf{L}_Y)}{\det(\mathbf{L} + \mathbf{I})'} \quad \text{if Exponential to polynomial}$$

where \mathbf{L}_{Y} is a submatrix of \mathbf{L} indexed by elements in Y.

Kulesza, Alex, and Ben Taskar. "Determinantal point processes for machine learning." Now Publishers Inc (2012).



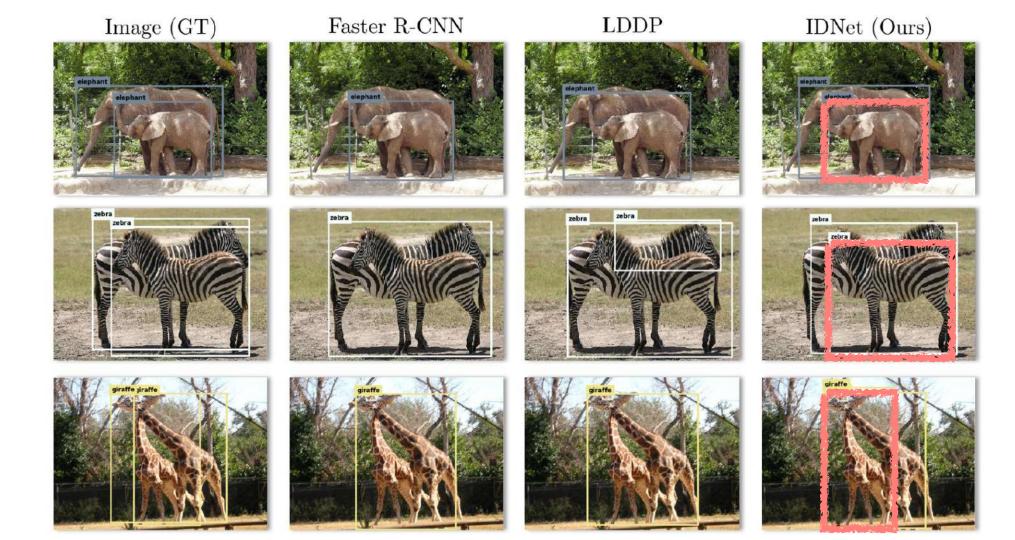


DPP
$$\mathscr{P}(Y) = \frac{\det(\mathbf{L}_Y)}{\sum_{A \subseteq S} \det(\mathbf{L}_A)} = \frac{\det(\mathbf{L}_Y)}{\det(\mathbf{L} + \mathbf{I})}$$

$$\begin{aligned} Loss_{ID}(Y_{rep}, \mathscr{Y}) &= -\log(\mathscr{P}_{\mathbf{L}_{\mathscr{Y}}}(Y_{rep})) = -\log(\frac{\det(\mathbf{L}_{Y_{rep}})}{\det(\mathbf{L}_{\mathscr{Y}} + \mathbf{I}_{\mathscr{Y}})}) \\ &= -\log\det(\mathbf{L}_{Y_{rep}}) + \log\det(\mathbf{L}_{\mathscr{Y}} + \mathbf{I}_{\mathscr{Y}}) \end{aligned}$$

Results of Learning Identity

RLAB Robot Learning Laboratory



Successfully detected overlapped instances

Learning Correct Category

pos

$$\mathscr{L}_{ss}(Y_{pos}, \mathscr{Y}_m) = -\log \sum_{Y \subseteq Y_{pos}} \mathscr{P}_{\mathbf{L}_{\mathscr{Y}_m}}(Y) = -\log \sum_{Y \subseteq Y_{pos}} \frac{\det(\mathbf{L}_Y)}{\det(\mathbf{L}_{\mathscr{Y}_m} + \mathbf{I}_{\mathscr{Y}_m})}$$
$$= -\log\det(\mathbf{L}_{Y_{pos}} + \mathbf{I}_{Y_{pos}}) + \log\det(\mathbf{L}_{\mathscr{Y}_m} + \mathbf{I}_{\mathscr{Y}_m})$$

Learning to reduce scores of wrong categories

Semantic Visual Navigation for Embodied Agents: A Graph-Based Approach

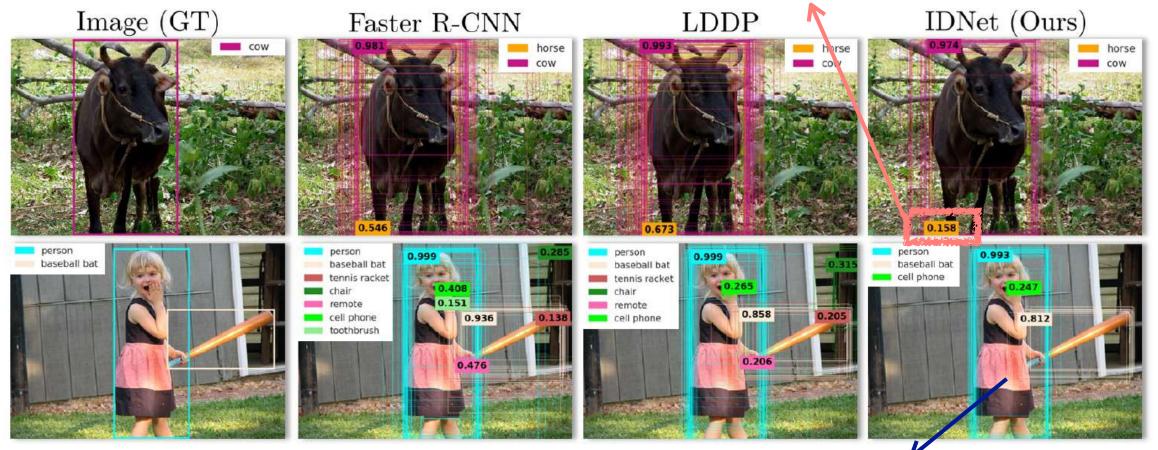
Y

m

Doa

Results of Sparse Score

Successfully reduced the score of wrong categories



Removed wrong categories

DPP Inference

Algorithm 1 Instance-Aware DPP Inference (IDPP).

```
Y^* = \emptyset
while \mathcal{Y} \neq \emptyset do
   j^* = \arg\max_{j \in \mathcal{Y}} \log(\prod_{i \in Y^* \cup \{j\}} \mathbf{q}_i^2 \cdot \det(\mathbf{S}_{Y^* \cup \{j\}}))
   Y = Y^* \cup \{j^*\}
   if Cost(Y) > Cost(Y^*) then
                                                                   b where \operatorname{Cost}(Y) = \log(\prod_{i \in Y} \mathbf{q}_i^2 \cdot \det(\mathbf{S}_Y))
       Y^* \leftarrow Y
        delete j^* from \mathcal{Y}
    else
        return Y^*
    end if
end while
return Y^*
```

Results on CrowdHuman Dataset

Method	Inference	mAP						
Method	Interence	${\tt crowd}_3$	$crowd_4$	$crowd_5$	crowd ₆	$crowd_7$		
# of image	$4,\!370$	$3,\!879$	3,143	2,087	1,052			
Faster R-CNN [62]	NMS	52.0	51.8	51.1	44.4	44.2		
RepLoss [73]	NMS	52.2	52.0	51.5	48.4	44.2		
LDDP [4]	LDPP	52.9	52.8	52.5	52.0	51.4		
IDNet	IDPP	58.9	56.3	55.8	54.9	54.2		
				Baseline	Crowd Det	ection Methods		

Semantic Visual Navigation for Embodied Agents: A Graph-Based Approach

R

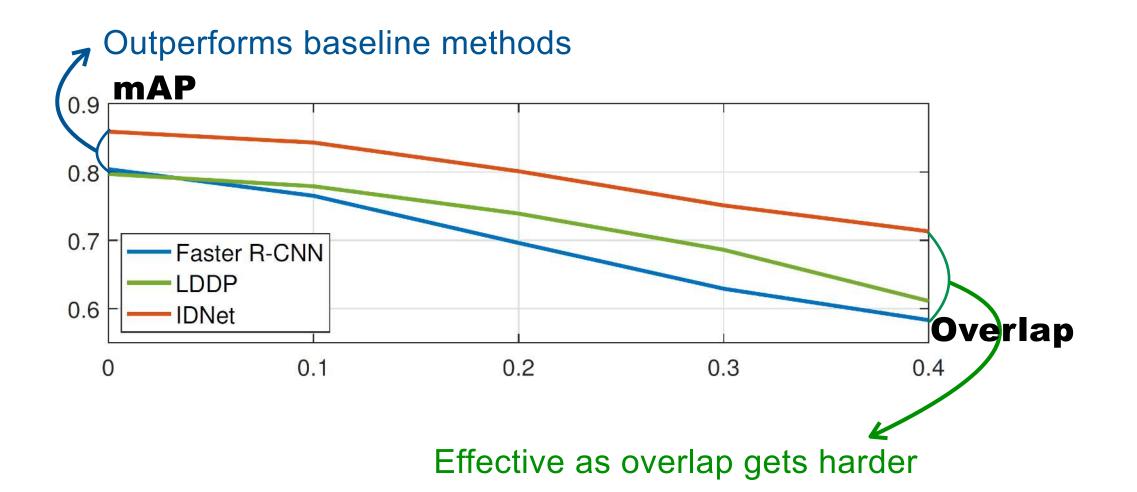
Robot Learning Laboratory

Results on COCO Dataset

Method	Inference	Backbone	AP		AP_{50}		AP_{75}	
Wiethou			test	crowd	test	crowd	test	crowd
Faster R-CNN [62]	NMS	VGG-16	26.2	19.2	46.6	36.9	26.9	18.4
LDDP [4]	LDPP	VGG-16	26.4	19.6	46.7	37.9	26.8	18.6
IDNet	IDPP	VGG-16	27.3	20.5	47.6	38.2	28.2	20.0
Faster R-CNN [62]	NMS	ResNet-101	31.5	23.5	52.0	42.5	33.5	23.0
LDDP [4]	LDPP	ResNet-101	31.4	23.8	51.7	43.0	33.4	23.4
IDNet	IDPP	ResNet-101	32.7	24.4	53.1	43.4	34.8	24.4

Results on MS COCO

Ablation Study



Summary

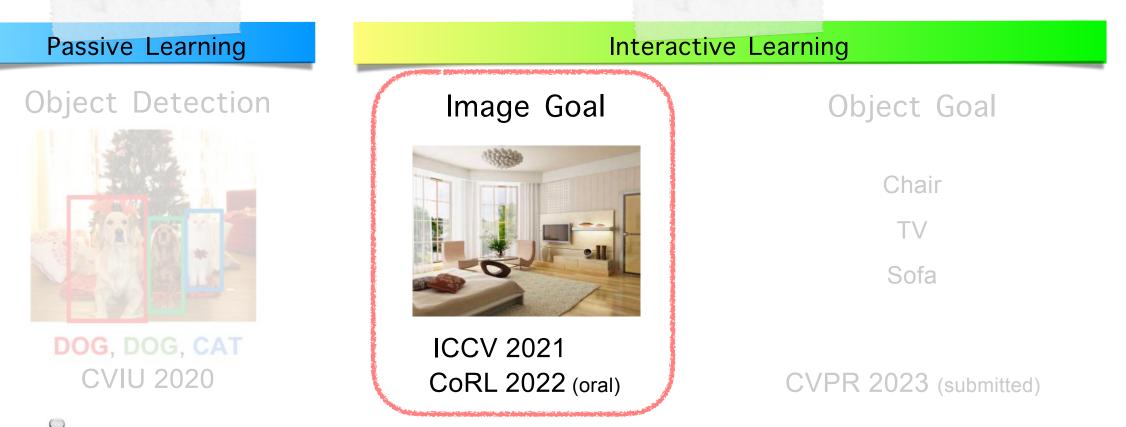
Proposes an end-to-end object detection framework for crowded situation using object relationship.

✓Proposes two losses using Determinantal Point Processes

- ID (Instance identity) loss, which learns the identity of objects.
- SS (Sparse score) loss, which removes confusing categories.

Roadmap

RLAB Robot Learning Laboratory



Obin Kwon, Nuri Kim, Yunho Choi, Hwiyeon Yoo, Jeongho Park, and Songhwai Oh., "Visual Graph Memory with Unsupervised Representation for Visual Navigation," International Conference on Computer Vision (ICCV-21)

Nuri Kim, Obin Kwon, Hwiyeon Yoo, Yunho Choi, Jeongho Park, and Songhwai Oh., "Topological Semantic Graph Memory for Image-Goal Navigation," Conference on Robot Learning (CoRL-22), oral presentation

Navigation

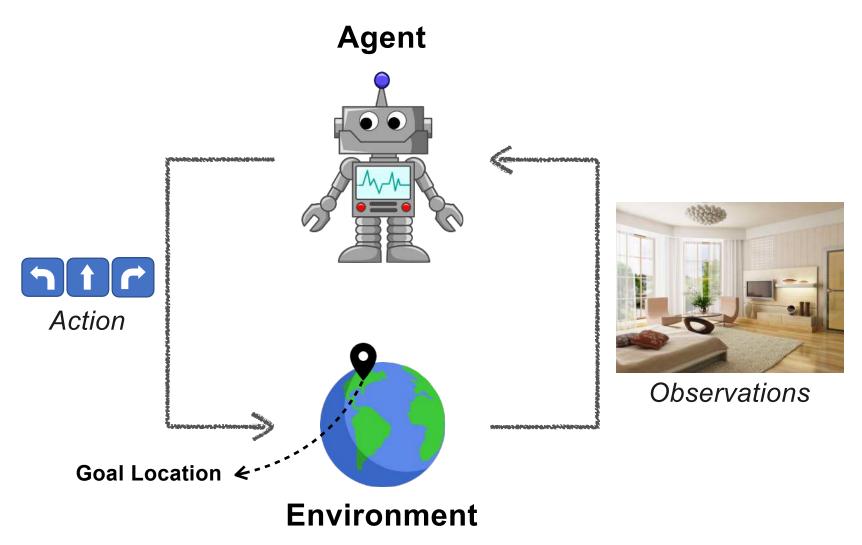
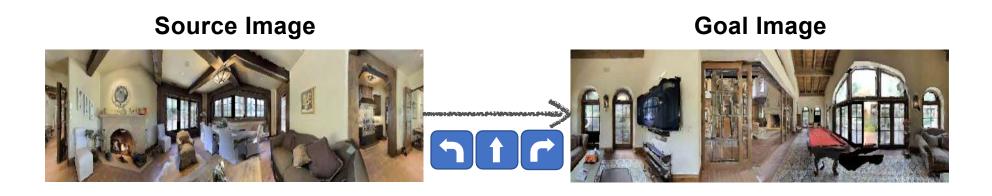
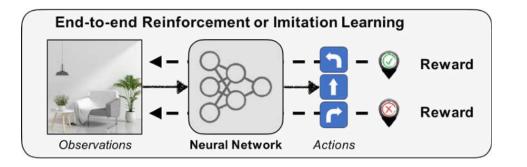


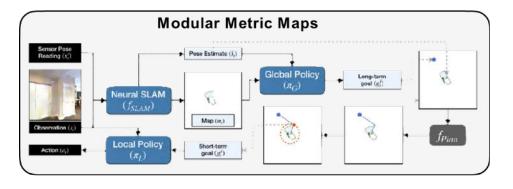
Image Goal Navigation

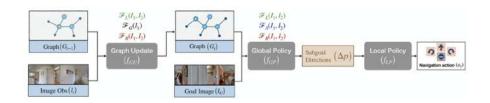


- Agent observations are panoramic images
- ▶ Take actions to navigate to the goal location
- ▶ Take the **stop** action at the goal location

Memory







Implicit Memory

- High sample complexity
- Ineffective in large environments

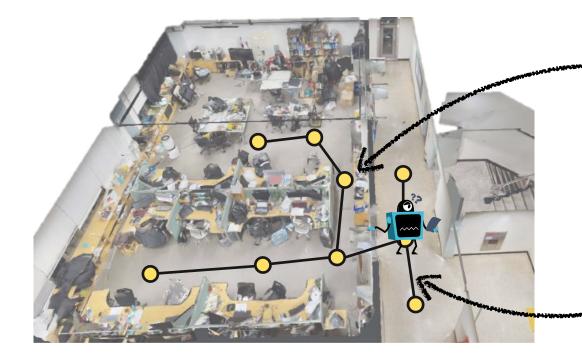
Metric Map Memory

- Can not learn semantic priors
- Pose error accumulation

Topological Graph Memory

- Concise and precise
- Accurate pose sensor is not required

Topological Graph Memory

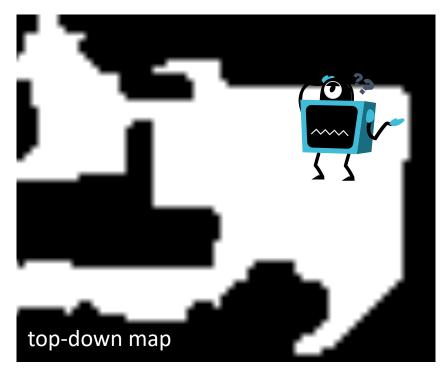


A vertex represents an area in the environment

An edge represents the relationship between two vertices, such as reachability and proximity

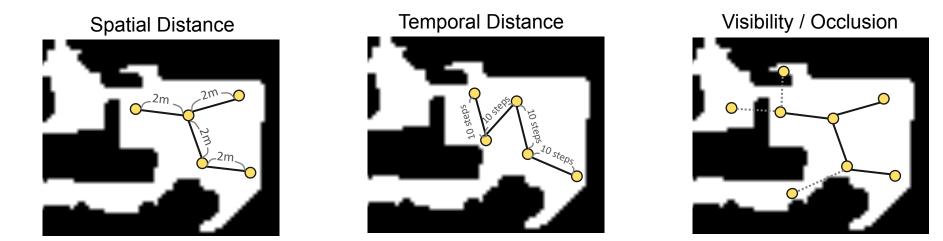
Topological Graph Memory

How to build a graph map?



Visual Graph Memory

Previous graph-based navigation methods usually select the vertices and edges based on the following standards :



Several learning-based methods build a graph map using a pretrained classifier network, based on images. It is trained to determine whether the two image observations are close or not, based on the predefined rules.

Elaborately designed annotation rules based on accurate geometric information are required for preparing datasets.

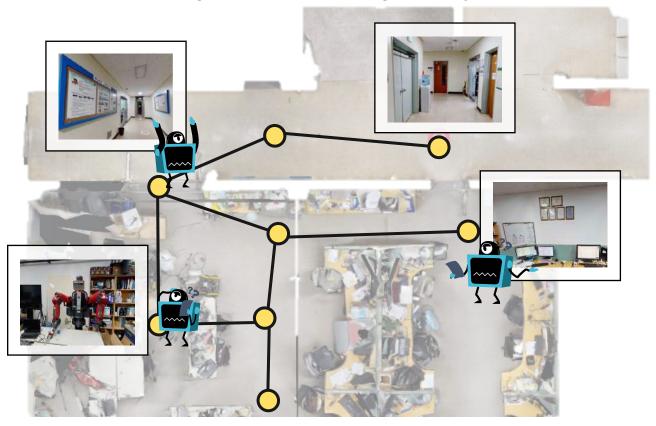
- What is the adequate distance between each node?
- How can we determine the two nodes are visible from each other?

Visual Graph Memory

Furthermore, **the perception about relative distance can be vary** depending on the appearance of the environment. For example, the image pairs below are 1.5m apart from each other.

We can recognize that the camera position has certainly moved from the original position in the first pair. However, in the second pair, the translation is not visually significant as much as the first pair.

Human remembers the novel landmarks rather than equally-spaced distances. Human subconsciously knows which places are good to be the landmarks. We aimed to inject this characteristic into the graph-based navigation system.



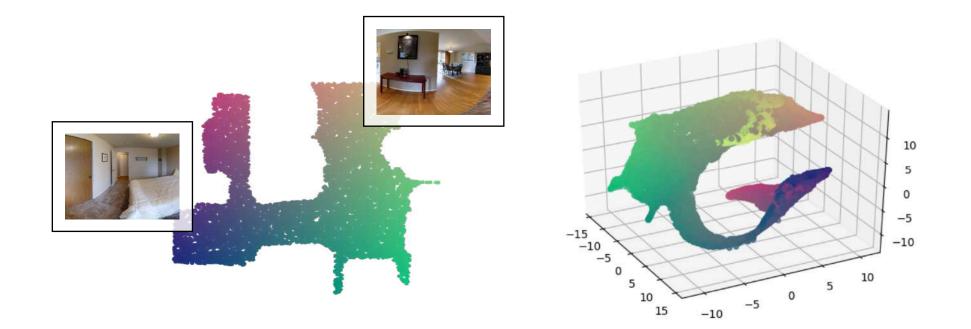
We hypothesized that using unsupervised image representation is sufficient to build a graph map.

We have collected 10000 images from each (training) environment in habitat simulator and trained an image encoder.

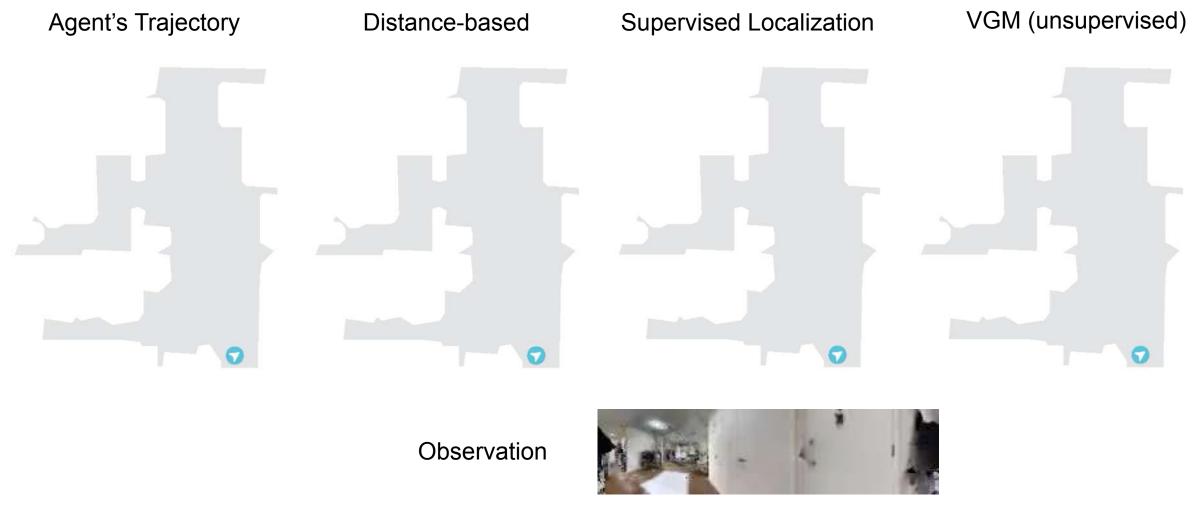
The image encoder is trained using unsupervised contrastive learning, without any annotation labels.

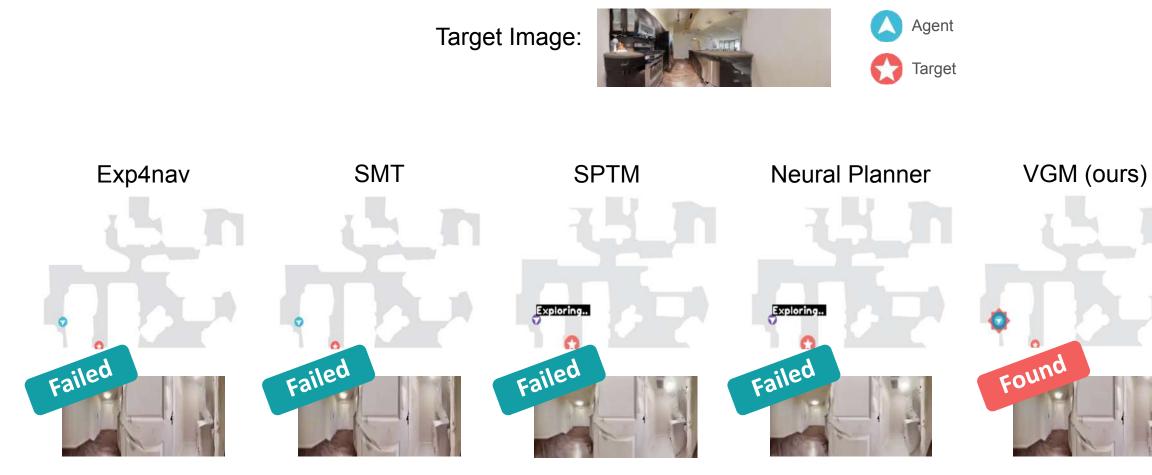
This image encoder transforms image observations to feature embeddings.

The more the images have a similar appearance, the closer the distance between the encoded features.



Comparing to other previous methods, ours can build a sufficient graph map during the navigation.

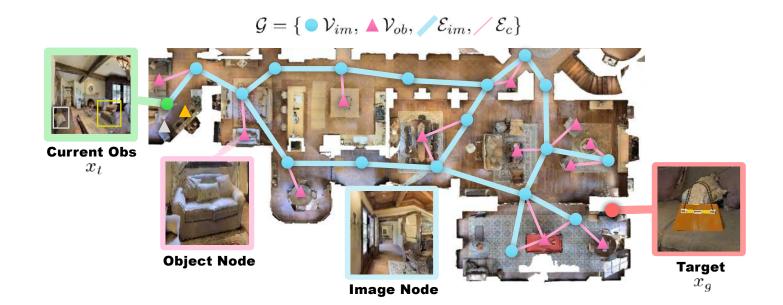




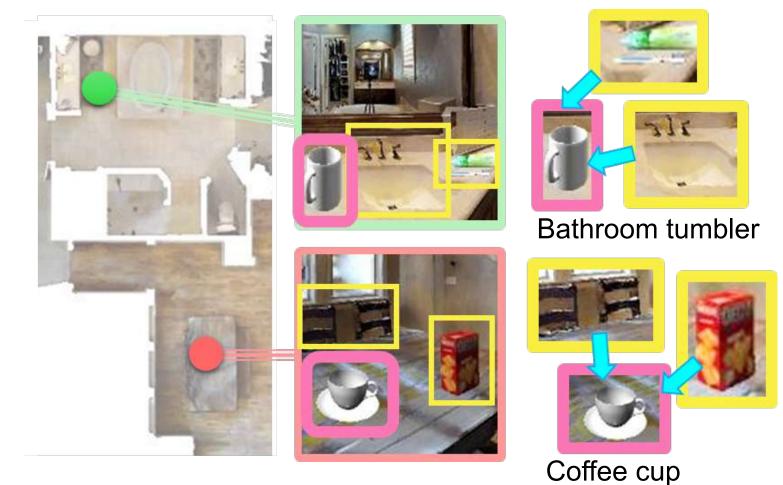
The proposed navigation framework brings performance improvement over other types of memory models.

Methods	Momory Typo	Need Pose	Navigation Results		
	Memory Type	Information	Success Rate	SPL	
CNN + LSTM	hidden vector	yes	0.49	0.45	
ANS + predicted target pose	metric map	yes	0.58	0.18	
Exp4nav	metric map	yes	0.59	0.51	
SMT	stack of image features	yes	0.68	0.56	
Neural Planner	graph	yes	0.60	0.36	
Exploration + SPTM	graph	no	0.58	0.35	
NTS	graph	yes	0.63	0.43	
VGM (ours)	graph	no	0.76	0.64	

Semantic Navigation

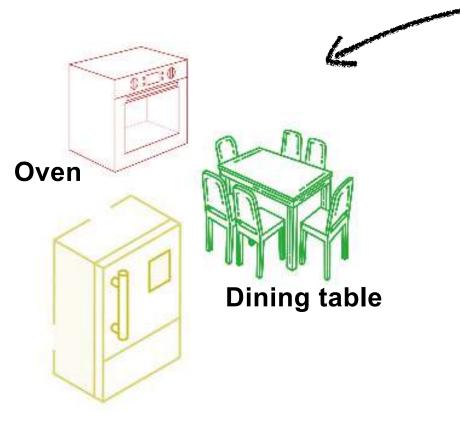


Object Context



Neighboring objects make an object unique

Place-Object Context

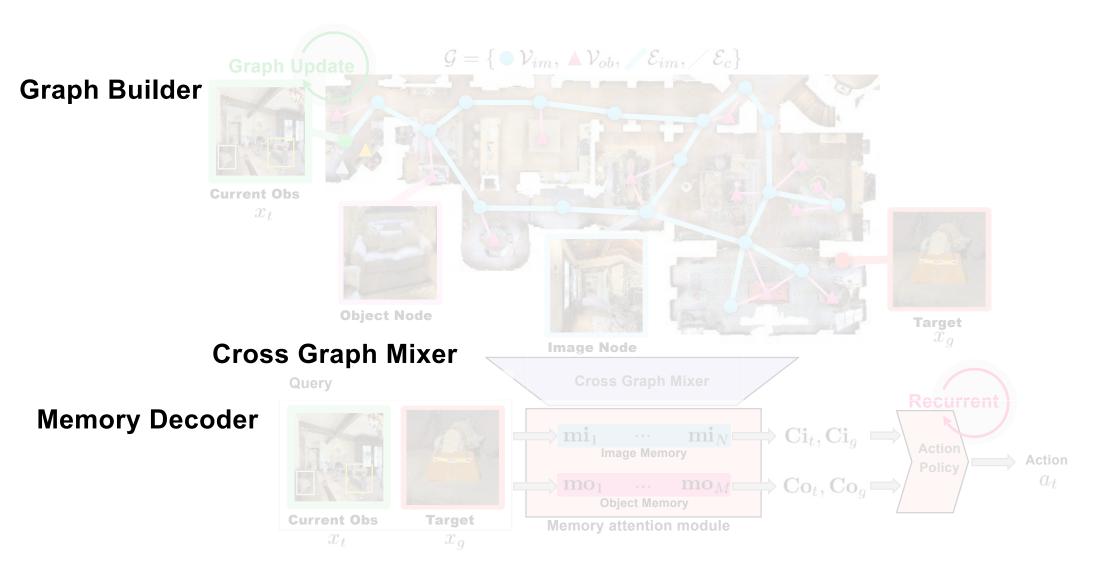


Refrigerator

Kitchen

How to embed landmark knowledge into topological graph memory?

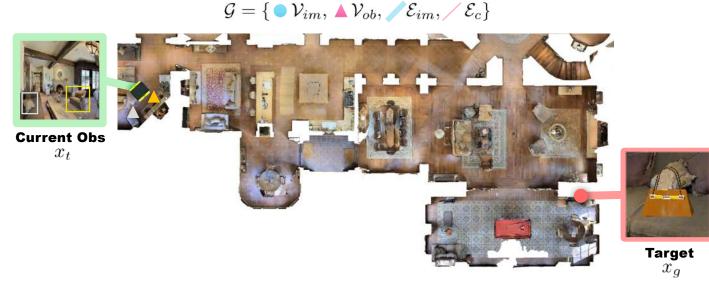
Topological Semantic Graph Memory



Semantic Visual Navigation for Embodied Agents: A Graph-Based Approach

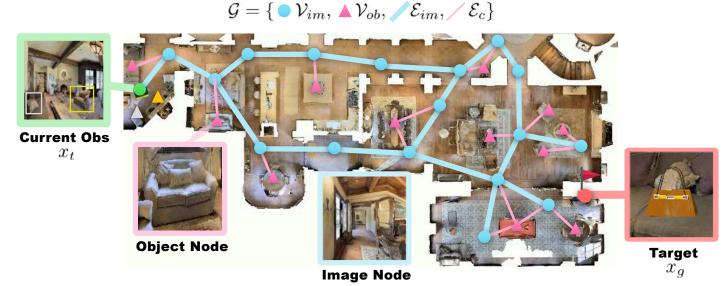
Robot Learning Laboratory

Graph Builder: Overview

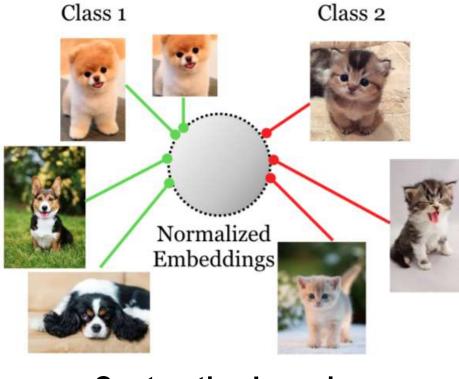


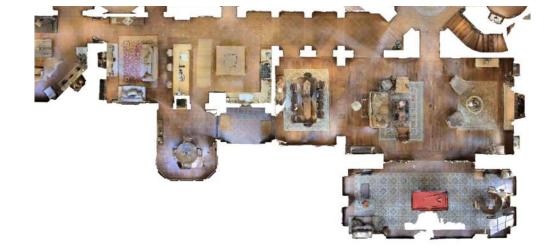
* Note that floorplan and node positions are only used for illustration and not given as input to agent

Graph Builder: Overview



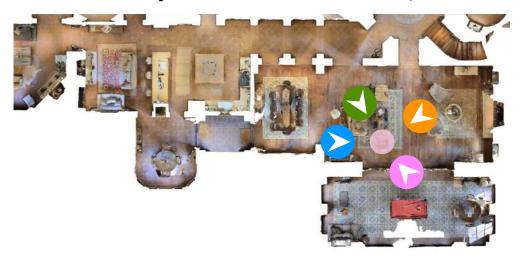
* Note that floorplan and node positions are only used for illustration and not given as input to agent





Contrastive Learning

Collect an object from different viewpoints



Query

Top 5 objects in the environment (among ~7000 candidates)

The object encoder successfully find a query object from different viewpoints Semantic Visual Navigation for Embodied Agents: A Graph-Based Approach

Object Memory

Observation

Object Nodes: Individual objects

Detected objects are connected to the current node

* Color represents the 3-dim tsne feature of the place

Image Nodes

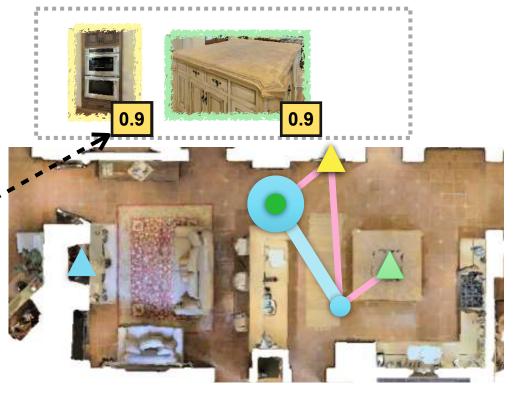
Agent's Current Image Node

Similarity is **high** and the category is the same. It indicates that the object is **already in the memory**.

Since **detection score is higher** than the memory node, It is used to update the memory node.

The node is connected to the lastly localized image node.

Observation

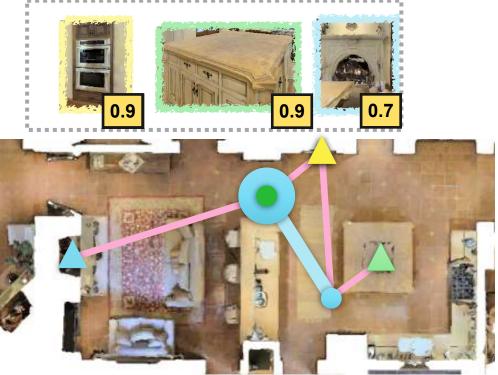


* Color represents the 3-dim tsne feature of the place

Image Nodes

Agent's Current Image Node

Object Memory



* Color represents the 3-dim tsne feature of the place

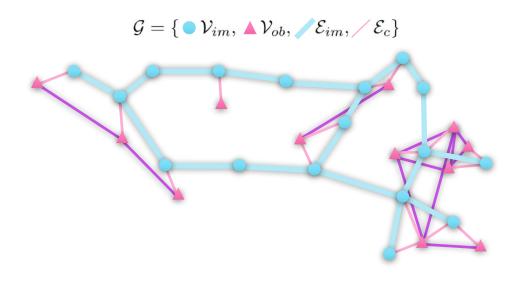
Image Nodes

Agent's Current Image Node

Observation

 Similarity with memory is low.
 It is added to a memory as a new node and connected to the lastly localized image node.

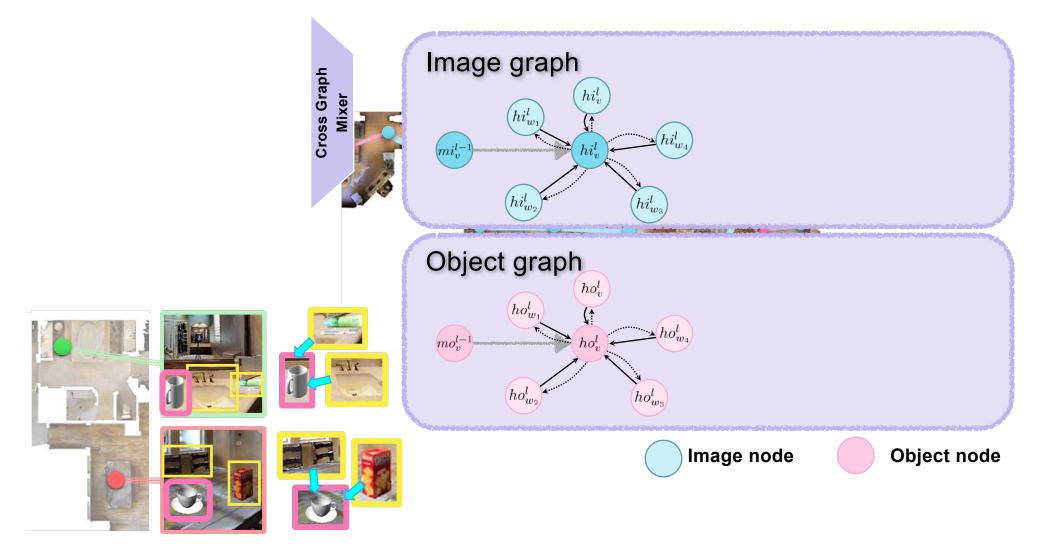
Ph.D. Thesis: Object-Based Relationship Learning for Robust Visual Situation Understanding



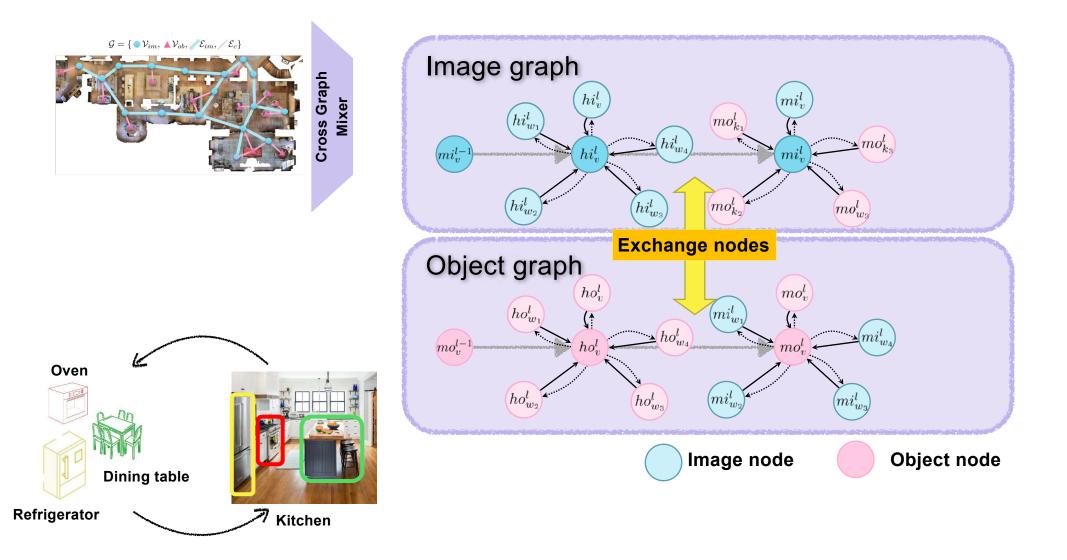
$$A_{ob} = A_c^T (A_{im} + I) A_c$$

- A_{im} : image affinity matrix
- A_{ob} : object affinity matrix
- A_c : image-object affinity matrix

Cross Graph Mixer: Self Update



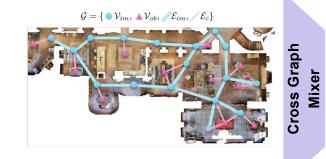
Cross Graph Mixer: Cross Update

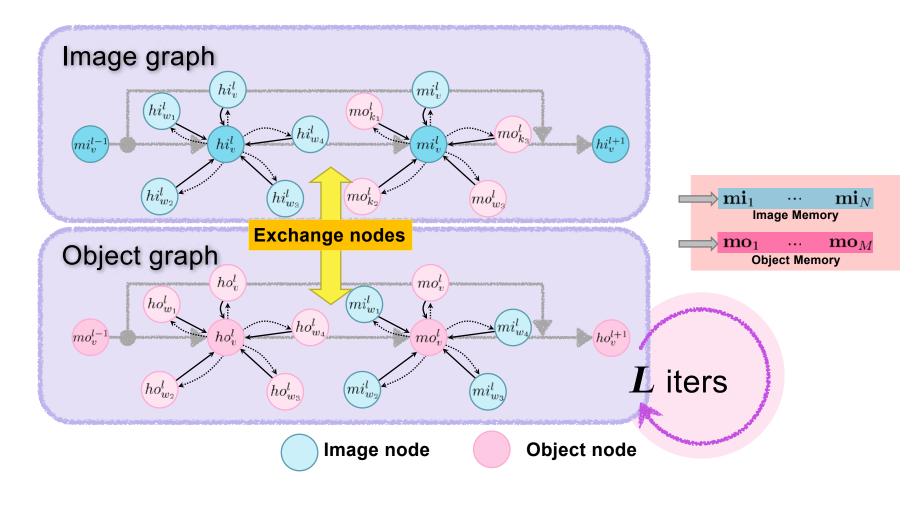


Semantic Visual Navigation for Embodied Agents: A Graph-Based Approach

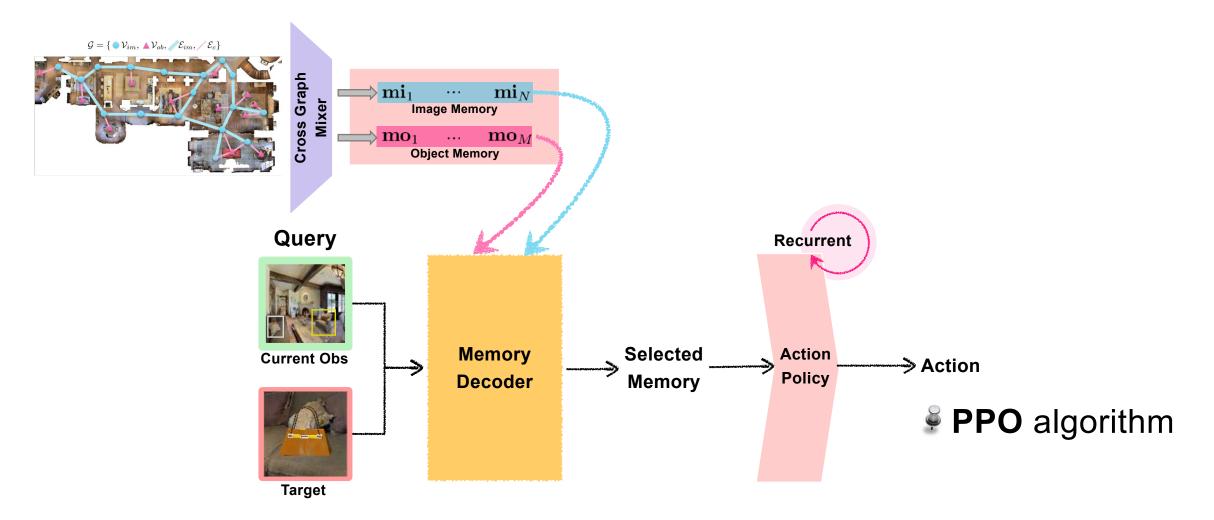
Robot Learning Laboratory

Cross Graph Mixer: Cross Update





Memory Decoder



Demo Video

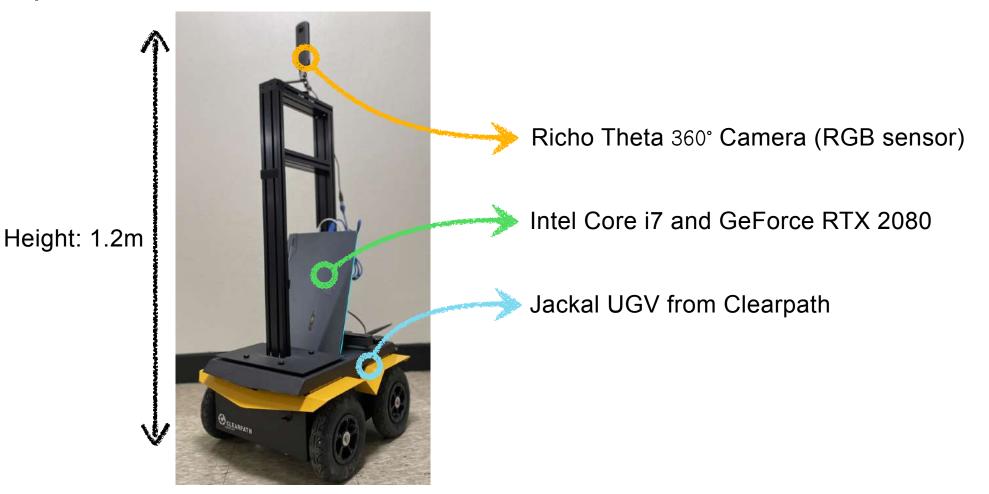
TSGM (Ours) Semantic Visual Navigation for Embodied Agents: A Graph-Based Approach

VGM [2]

[2] Obin Kwon, et al. "Visual graph memory with unsupervised representation for visual navigation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

Real-World Demonstration

Robot specification



Real-World Demonstration

* we estimated the robot and object locations to draw graphs on the map

Goal *7.55m

Observation

Results

Method	Memory	No Pose	Object	Easy Medium		ım	Hard		Overall		
Method	wiemory	110 1 050	Object	Success	SPL	Success	SPL	Success	SPL	Success	SPL
RGBD + RL [26]	implicit	X	×	72.5	69.5	53.1	48.6	22.3	17.7	49.3	45.3
ANS [17]	metric	×	×	74.2	20.5	68.4	22.9	29.9	11.0	57.5	18.1
Exp4nav [5]	metric	×	×	70.2	61.8	60.6	52.4	46.9	38.5	59.2	50.9
SMT [8]	graph	X	X	81.9	77.4	65.6	52.2	55.6	39.7	67.7	56.4
Neural Planner [20]	graph	×	×	71.7	41.3	64.7	38.5	42.0	27.0	59.5	35.6
SPTM [9]	graph	×	×	66.5	40.6	64.2	38.5	42.1	25.4	57.6	34.8
VGM [18]	graph	<u>/</u>	×	86.1	79.6	81.2	68.2	60.9	45.6	76.1	64.5
TSGM (Ours)	graph	 	~	91.1	83.5	82.0	68.1	70.3	50.0	81.1	67.2
Implicit memory Metric-map memory Topological Memory							nory				

Results

Path Type	Method	Easy Medium		um	Hard		Overall		
J PC		Success	SPL	Success	SPL	Success	SPL	Success	SPL
	NRNS [27]	67.1	57.8	52.4	41.2	32.6	22.4	50.7	40.5
Straight	VGM [18]	81.0	54.4	82.0	69.9	67.3	54.4	76.7	59.6
	TSGM (Ours)	94.4	92.1	92.6	84.3	70.3	62.8	85.7	79. 7
	NRNS [27]	31.7	13.0	29.0	13.6	19.2	10.4	26.6	12.3
Curved	VGM [18]	81.0	45.5	78.8	59.5	62.2	46.9	74.0	50.6
	TSGM (Ours)	93.6	91.0	89.7	77.8	64.2	55.0	82.5	74.1

SPL: Success weighted by normalized inverse Path Length

$$\frac{1}{N}\sum_{i=1}^{N}S_{i}\frac{l_{i}}{\max(p_{i},l_{i})}$$

Ablation Study on Cross Graph Mixer

Update	Success	SPL
No	0.533	0.393
Visual	0.578	0.446
Object	0.613	0.458
Cross	0.627	0.471

Ablation study on Cross graph mixer updates

Summary

☑ Integrated semantic information to topological graph memory

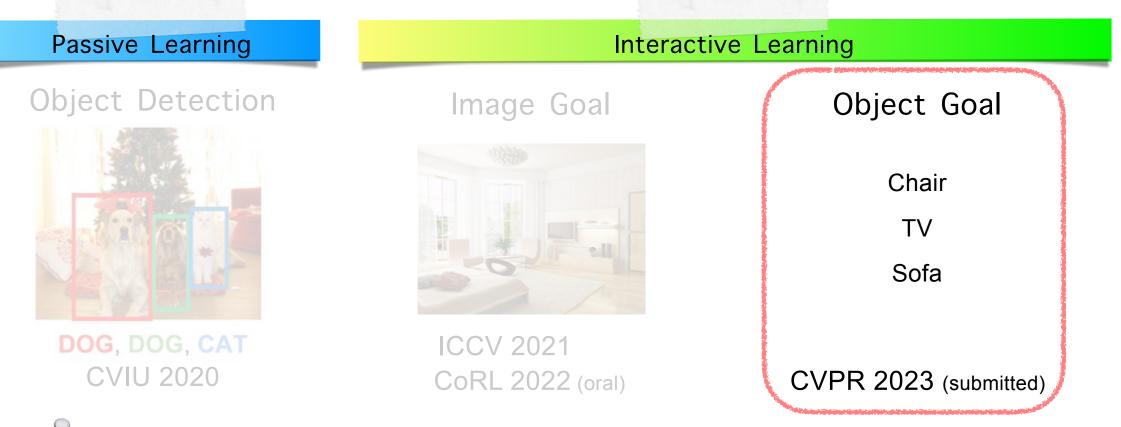
To the best of our knowledge, we firstly constructed object graph on the topological graph.

TSGM can connect objects in proximity even though the adjacent objects are not in the same view, which makes a **spatially meaningful** graph memory.

✓TSGM gives object connections and object-place connections to the agent, and outperforms SOTA methods on image goal navigation.

Roadmap

RILAB Robot Learning Laboratory

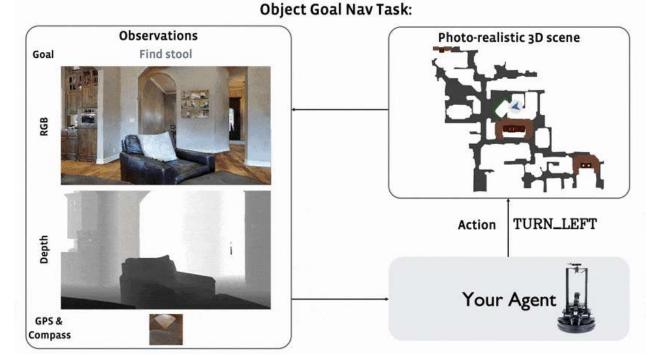


Nuri Kim, Jeongho Park, and Songhwai Oh., "Relational Semantic Visual Graph for Object-Goal Navigation," Computer Vision and Pattern Recognition 2023 (CVPR-23, *submitted*)

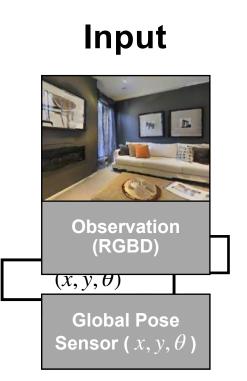
Object Goal Navigation

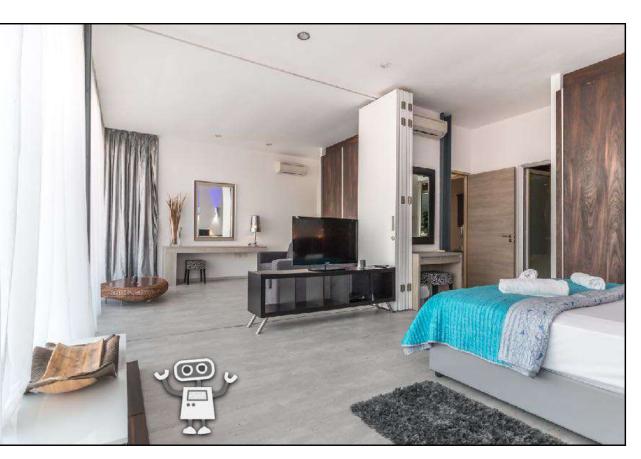
68

- In ObjectNav, an agent is initialized at a random starting position and orientation in an unseen environment and asked to find an instance of an **object category** (*'find a chair'*) by navigating to it. A map of the environment is not provided and the agent must only use its sensory input to navigate.
- The agent is equipped with an RGB-D camera and a (noiseless) GPS+Compass sensor. GPS+Compass sensor provides the agent's current location and orientation information relative to the start of the episode. We attempt to match the camera specification (field of view, resolution) in simulation to the Azure Kinect camera, but this task does not involve any injected sensing noise.

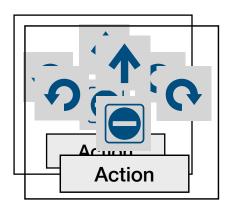


Object Goal Navigation





Output



Goal: Chair

Conclusion

- We propose detection algorithm for building *semantic knowledge* in passive learning methods.
- Using the know-how, we build *navigation agents* that can utilize semantic knowledge.
- The proposed approaches do not need a pose sensor for long-term planning, which makes the agent *robust to noises* and applicable to real-world applications.

Conclusion

You are in a bedroom Turn around to the left until you see a door leading out into a hallway, ao through it. Hang a right and walk between the island and the couch on your left. When you are between the second and third chairs for the island stop.

RLAB Robot Learning Laboratory

Table 1. Habitat ObjectNav results on MP3D. We report the • Active detectio results from the top-performing methods. [†] This is privileged.

		MP3D (val)			
	No Global Pose		SPL \uparrow	DTS \downarrow	
BC		3.8	2.1	7.5	
			1.8	6.9	
Red-Rabbit [43]		34.6	7.9		
		28.4	11.0	5.6	
		22.7	7.2	6.7	
		27.3	9.2	5.8	
		31.8	12.1	5.1	
ANS + SI [3]		27.9	13.1	6.1	
SemExp + SI[3]		34.7	15.1	5.8	
RSVG (ours)	×	39.0			
RSVG - Update	×	33.3	23%	∕₀ drop	
rsvg + gt ^{\dagger}	×	62.0			

Object Goal Navigation Results on MP3D dataset

· Objected detectorionit a new several strong using Nerf

Object detector with interactive learning

Active detection and navigation using Nerf

Interesting Papers on Visual Navigation

- Exploration
 - Mid-level visual representations improve generalization and sample efficiency for learning active tasks, CoRL 2019
 - SplitNet: Sim2Sim and Task2Task Transfer for Embodied Visual Navigation, ICCV 2019
 - Learning Exploration Policies for Navigation, ICLR 2019
 - Learning To Explore Using Active Neural SLAM, ICLR 2020
- Active Vision
 - Viewpoint Selection for Visual Failure Detection, IROS 2017
 - A dataset for developing and benchmarking active vision, ICRA 2017
 - Geometry-aware recurrent neural networks for active visual recognition, NIPS 2018
 - Learning to look around: Intelligently exploring unseen environments for unknown tasks, CVPR 2018
 - Embodied Visual Recognition, ICCV 2019
 - SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency, NeurIPS 2021

Robot Learning Laboratory

Interesting Papers on Visual Navigation

- Point Goal Navigation
 - A Behavioral Approach to Visual Navigation with Graph Localization Networks, RSS 2019
 - Learning Exploration Policies for Navigation, ICLR 2019.
 - Sparse Graphical Memory for Robust Planning, arXiv 2020
 - Active Neural Localization, ICLR 2018
 - Active Neural SLAM, ICLR 2020
- Image Goal Navigation
 - Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning, ICRA 2017
 - Semi-Parametric Topological Memory for Navigation, ICLR 2018
 - Sparse Graphical Memory for Robust Planning, arXiv 2020
- Object Goal Navigation
 - Auxiliary Tasks and Exploration Enable ObjectNav, ICCV 2021
 - Treasure Hunt Data Augmentation for Semantic Navigation, ICCV 2021
 - Object Goal Navigation using Goal-Oriented Semantic Exploration, NeurIPS 2020
 - Learning to Map for Active Semantic Goal Navigation, ICLR 2022
 - PONI: Potential Functions for ObjectGoal Navigation with Interaction-free Learning, CVPR 2022

Robot Learning Laboratory

Interesting Papers on Visual Navigation

- Visual Language Navigation
 - Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation, ICRA 2021
 - Waypoint Models for Instruction-guided Navigation in Continuous Environments, ICCV 2021
 - LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language, Vision, and Action, CoRL 2022

Research Tips

On Richard Feynman's problem solving

- The Feynman problem solving algorithm:
 - 1. Write down the problem
 - 2. Think very, very hard
 - 3. Write down the solution

Research Tips

- Keep up with recent researches
 - Google scholar keyword alerts
 - Paper study with colleagues
- Organize research materials
 - EndNote (paper)
 - Notion (research journal)
 - Slack (experimental results)
 - Github (code)
 - PPT (organize intersting papers in ppt)
 - LaTex (write paper -> experiment -> revise paper -> ..., for this, use ChatGPT)
- Visualize your work
 - Wandb / Tensorboard (training)
 - ipython notebook (simple test/visualize)
 - at least plt.show()

Thank you for your attention