

Topological Semantic Graph Memory for Image-Goal Navigation

CoRL 2022 (accepted as oral presentation)

Nuri Kim Obin Kwon Hwiyeon Yoo Yunho Choi Jeongho Park Songhwai Oh

http://rllab.snu.ac.kr

Abstract

This work proposes an approach to incrementally collect a landmark-based semantic graph memory and use the collected memory for image goal navigation. Given a target image to search, an embodied robot utilizes the semantic memory to find the target in an unknown environment. We present a method for incorporating object graphs into topological graphs, called *Topological Semantic Graph Memory (TSGM)*. Although TSGM does not use position information, it can estimate 3D spatial topological information about objects.

Cross Graph Mixer

Why a robot needs a topological semantic memory?

- (a) The contextual representation, defining an object through neighboring objects, helps to eliminate the ambiguity of similar but different objects. For example, a cup in the kitchen can be perceived as one next to a chair and snack box, while a cup in the bathroom can be shown as one that is near to a toothbrush and washstand.
- (b) A place can be better described through objects. A kitchen, for instance, can be defined by the presence of a refrigerator, oven, and dining table.

Graph Builder

Top 5 objects in the environment (among ~7000 candidates)

Experiments

Found Target

Start

The object encoder² successfully find a query object in different viewpoints

Object Memory

Image Nodes

Object Nodes

Agent's Current Image Node

Similarity with memory is low. It is added to a memory as a new node and connected to the lastly localized image node.

Results

Table 1: Comparison of TSGM with memory-based baselines on image goal navigation on Gibson.

Method	Memory	No Pose	Object	Easy		Medium		Hard		Overall	
			j	Success	SPL	Success	SPL	Success	SPL	Success	SPL
RGBD + RL [26]	implicit	X	×	72.5	69.5	53.1	48.6	22.3	17.7	49.3	45.3
Active Neural SLAM [17]	metric	×	×	74.2	20.5	68.4	22.9	29.9	11.0	57.5	18.1
Exp4nav [5]	metric	×	×	70.2	61.8	60.6	52.4	46.9	38.5	59.2	50.9
SMT [8]	graph	×	×	81.9	77.4	65.6	52.2	55.6	39.7	67.7	56.4
Neural Planner [20]	graph	×	×	71.7	41.3	64.7	38.5	42.0	27.0	59.5	35.6
SPTM [9]	graph	✓	×	66.5	40.6	64.2	38.5	42.1	25.4	57.6	34.8
VGM [18]	graph	 	×	86.1	79.6	81.2	68.2	60.9	45.6	76.1	64.5
TSGM (Ours)	graph	 	 	91.1	83.5	82.0	68.1	70.3	50.0	81.1	67.2

Table 2: Comparison of TSGM with image goal navigation baselines on straight/curved episodes on Gibson.

Path Type	Method	Easy		Medium		Hard		Overall	
		Success	SPL	Success	SPL	Success	SPL	Success	SPL
	NRNS [27]	67.1	57.8	52.4	41.2	32.6	22.4	50.7	40.5
Straight	VGM [18]	81.0	54.4	82.0	69.9	67.3	54.4	76.7	59.6
	TSGM (Ours)	94.4	92.1	92.6	84.3	70.3	62.8	85.7	79.7
	NRNS [27]	31.7	13.0	29.0	13.6	19.2	10.4	26.6	12.3
Curved	VGM [18]	81.0	45.5	78.8	59.5	62.2	46.9	74.0	50.6
	TSGM (Ours)	93.6	91.0	89.7	77.8	64.2	55.0	82.5	74.1

Similarity is high and the category is the same. It indicates that the object is already in the memory. Since detection score is higher than the memory node. It is used to update the memory node. The node is connected to the lastly localized image node.

Observation