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Abstract Cross Graph Mixer

This work proposes an approach to incrementally collect a landmark-based semantic graph
memory and use the collected memory for image goal navigation. Given a target image to Image graph
search, an embodied robot utilizes the semantic memory to find the target in an unknown
environment. We present a method for incorporating object graphs into topological graphs,
called Topological Semantic Graph Memory (TSGM). Although TSGM does not use
position information, it can estimate 3D spatial topological information about objects.
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Why a robot needs a topological semantic memory?

@

(a) The contextual representation, defining an object through neighboring objects, helps to
eliminate the ambiguity of similar but different objects. For example, a cup in the kitchen
can be perceived as one next to a chair and snack box, while a cup in the bathroom can be
shown as one that is near to a toothbrush and washstand.

(b) A place can be better described through objects. A kitchen, for instance, can be defined by
the presence of a refrigerator, oven, and dining table. Trajectory and graph Start Goal * 7.55m Found Target
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The object encoder‘successfully find a query object in different viewpoints Table 1: Comparison of TSGM with memory-based baselines on image goal navigation on Gibson.
Method Memory No Pose  Object | Easy Medium Hard | Overall

| Success SPL  Success SPL  Success SPL | Success SPL

RGBD + RL [ 6] implicit X X 72.5 69.5 53.1 48.6 22.3 17.7 49.3 45.3

. Active Neural SLAM [17] metric X X 74.2 20.5 68.4 22.9 299 11.0 57.5 18.1

Similarity is high and the category is the same. | ObjectMemory Expdnav [5] metric P P 702 618 | 606 524 | 469 385 592 509

'/ - : : than the memory node, Neural Planner [ 20] graph X X 71.7 41.3 64.7 38.5 42.0 27.0 59.5 35.6
J It is used to update the memory node. f{gﬁi |"_'| gr EPE X ggf i‘,-rgg ‘;‘?g 232 ggé igg gg? ig

N The node is connected to the lastly localized image node. 0.7 L] grap X . . . i . : i

e . TSGM (Ours) graph 91.1 835 | 820 681 703 500 | 811  67.2

Observation

Table 2: Comparison of TSGM with image goal navigation baselines on straight/curved episodes on
Gibson.

- 1. Path Type | Method Easy Medium Hard Overall
] - | = Success SPL Success SPL Success SPL | Success SPL
i AT TS Y R L1 e NRNS [27] 67.1 57.8 524 412 326 224 50.7 40.5
It ’3 added to Z melTolry als 7 ”e}"_/ ”qu 7 g * Color represents the 3-dim tsne feature of the place Straight VGM [15] 81.0 544 82.0 699 67.3 544 76.7 59.6
e el S TSGM (Ours) | 944 921 926 843 | 703 628 857 797
# Agent’s Current Image Node NRNS [ 7] 31.7 13.0 200 136 19.2 104 266 123
. _ Curved VGM [15] 81.0 455 78.8 595 62.2 469 74.0 506
(. Object Nodes TSGM (Ours) 93.6  91.0 89.7 77.8 64.2 55.0 82.5 74.1




