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Introduction: Why Visual?

* Map is provided
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Introduction: Why Visual?

* Map is not provided =

Hard @

* Getting exact map and location is hard.

* Sensing obstacles

 Estimating current location

@The problem is

* Sensor noise: Error in lidar sensor
* Actuation noise: Uncertainty in robot pose

@Vision-based methods

1. Cheap camera sensor
2. Semantic navigation -> Human-like navigation
3. Better performance than rule-based method

A
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e Resources: Simulator & Dataset

* Memory Structures
* Metric map
* Topological map

* Visual Navigation Tasks
* Exploration
e Path Following
* Active Vision
e Target-driven navigation
* Point Goal Navigation

* Image Goal Navigation
* Object Goal Navigation

* Vision and Language Navigation

e Research Tips
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Contents

e Resources: Simulator & Dataset

 Visual Navigation Tasks
e Exploration

Path Following

Active Vision

Target-driven navigation
e Point Goal Navigation
* Image Goal Navigation
* Object Goal Navigation

Vision and Language Navigation

* Memory Structures
* Metric map
* Topological map

e Research Tips
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Resources

* Visual Navigation

Simulator

Habitat
iGibson
Al2-Thor
Matterport3D
TDW
VirtualHome
VizDoom

Dataset

Matterport3D

Gibson
Room-to-Room (R2R)
RealEstate 10k
Replica

| ) XA XA
L-= AN

http://rilab.snu.ac.kr



Habitat RLA P
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* A high-performance physics-enabled 3D simulator with support for:

* 3D scans of indoor/outdoor spaces (with built-in support for HM3D, MatterPort3D, Gibson, Replica, and other
datasets)

* CAD models of spaces and piecewise-rigid objects (e.g. ReplicaCAD, YCB, Google Scanned Objects),

* Configurable sensors (RGB-D cameras, egomotion sensing)



https://aihabitat.org/datasets/hm3d/
https://niessner.github.io/Matterport/
http://gibsonenv.stanford.edu/database/
https://github.com/facebookresearch/Replica-Dataset
https://aihabitat.org/datasets/replica_cad/
https://www.ycbbenchmarks.com/
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects

Matterport 3D dataset RLAE

http://rilab.snu.ac.kr
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Coex B1 (Collected by RLLAB Navi Team)



iIGibson
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* iGibson is a simulation environment providing fast visual rendering and physics simulation based on Bullet.

* iGibson is equipped with fifteen fully interactive high quality scenes, hundreds of large 3D scenes
reconstructed from real homes and offices, and compatibility with datasets like CubiCasa5K and 3D-Front,

providing 12000+ additional interactive scenes.

Physical Interaction with Articulated Objects

More than 500 object
models

Sourced from open
source datasets and
cleaned up

Articulated objects can be
operated by agents

Domain Randomization for Endless Variations

Domain
randomization
for:

1. Visual textures
2. Dynamics

3. Object instance



https://github.com/CubiCasa/CubiCasa5k
https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset

Al2-Thor | AR

http:f/rllab.smlac.kr




Contents

e Resources: Simulator & Dataset
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* Metric map
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Memory Structures

Metric Map
Topological Map



Metric Map RLAE

http://rilab.snu.ac.kr

* "Semantic MapNet: Building Allocentric Semantic Maps and Representations
from Egocentric Views," 2021 AAAI

* [t introduces a semantic metric map memory architecture for navigation.

== » 450

(a) Agent (b) Egocentric (c) Spatial (d) Top-down
Trajectory Observations Memory Segmentation
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the relationship between two vertices,
abiligPefld proximity
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Topology Map RL /2
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* Pros:
e concise and sparse
* accurate geometric information is not required
* Cons:
* can be less accurate than SLAM-based metric map
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Contents

e Resources: Simulator & Dataset

* Memory Structures
* Metric map
* Topological map

* Visual Navigation Tasks
* Exploration
Path Following
Active Vision
Point Goal Navigation
Image Goal Navigation
Object Goal Navigation
* Vision and Language Navigation

e Research Tips
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Exploration

Learning To Explore Using Active Neural SLAM, ICLR 2020



Exploration RLZA P
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e “Learning To Explore Using Active Neural SLAM”, ICLR 2020

* Exploration: how to efficiently visit as much of the environment. It is useful for
maximizing the coverage.

* Learning about mapping, state-estimation, and path-planning purely from data in an
end-to-end manner can be expensive.

 Combining advantages of rule-based method and learning method



Active Neural SLAM RL /17
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Observation Predicted Map and Pose

——— .
Ground Truth

Sy
5, "

o

. ¢

-
-

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov, "Learning To Explore Using Active Neural SLAM." ICLR, 2020.
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Sensor Pose : -
Reading (x)) | ' -¥| Pose Estimate (£,)

Neural SLAM

S

(fsLam)

Map (m,)
Observation (5,) gase

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov, "Learning To Explore Using Active Neural SLAM." ICLR, 2020.



Active Neural SLAM

Sensor Pose
Reading (x;)

Observation (5,) g

Neural SLAM

(fsram)

B

Pose Estimate (%,

Map ()

Global Policy

(7g)

Long-term
goal (g/)

| /=
-/ .12/

http://rilab.snu.ac.kr

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov, "Learning To Explore Using Active Neural SLAM." ICLR, 2020.
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Sensor Pose : -
Reading (x] | - Pose Estimate (,)

Neural SLAM R

Global Policy Long-term %4
(EG) goal (gf) e

| (fsLam)
Map () N \

Short-term
goal (g;)

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov, "Learning To Explore Using Active Neural SLAM." ICLR, 2020.
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Sensor Pose : -
Reading (x/ | - Pose Estimate (%,)

@
I \ g
(ﬂG) goal (g;) 2
Neural SLAM R e,
| (FsLam) -
Map (m, _ \
L I P I- "‘ ﬁ"\_.}': ‘:\:)
- ocal rFolicy p Short-term o
Action (a,) (ﬂ' L) goal (2°)

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov, "Learning To Explore Using Active Neural SLAM." ICLR, 2020.



Active Neural SLAM RLAF
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Sensor Pose : -
Reading (x)) | ' -9 Pose Estimate (%)

e (Conv-Deconv Neural Network

e Trained with supervised learning

Neural SLAM R = e Learns explicit structured map
(fszam) and pose representations

Map (m,)
Observation (5;) e

dq "

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov, "Learning To Explore Using Active Neural SLAM." ICLR, 2020.



Active Neural SLAM

Pose Estimate (%,

Global Policy

(7g)

e (Convolutional Neural Network

Long-term
goal (g/)

RL /2
=N
-/ .12/
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e Trained with reinforcement learning

 QOperates at a course time-scale

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov, "Learning To Explore Using Active Neural SLAM." ICLR, 2020.



Active Neural SLAM

e Convolutional Neural Network

e Trained with imitation learning

e QOperates at a fine time-scale

Observation (s,)

Action (a,)

Local Policy

(71)

Short-term
goal (g;)

! —=\ DY
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http://rilab.snu.ac.kr

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, Ruslan Salakhutdinov, "Learning To Explore Using Active Neural SLAM." ICLR, 2020.
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Path Following

"Visual Memory for Robust Path Following," NeurlPS 2018
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e Path following: based on human's ability to Retrace

e Consider the first morning of a conference in a city you have never been to. Rushing to
the first talk, you might follow your phone's direction through a series of twists and
turns to reach the venue.

e \WWhen you return later in the day, you can retrace your steps to the conference venue
relatively robustly, remembering to take a left turn at the bistro and keep straight past
the coffee shop.
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Path Following RL 212

e How to solve?
e One classical approach is to build a full 3D model of the world via SLAM.
e However, for the task of navigation, this might be an overkill.
e Alarge number of learning-based approaches have sprung up.
e The proposed approach only rely on a single demonstration in a new environment.
Actuation Noise --m

»m
: Changes in World
. L ] , . :
) " ‘

)

Demonstration Execution under noisy actions and changes in the world.

(/ @ . f Challenges \w

-




Path Following RL AP
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e "Visual Memory for Robust Path Following," NeurlPS 2018
e Given a demonstration of a path, a first network generates a path abstraction.

e Equipped with this abstraction, a second network observes the worlds and decides
how to act to retrace the path under noisy actuation and a changing environment.

e Both networks are optimized end-to-end at training time.
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4 Memory\ h QObserve
1r ;:'.'. = N\ ¢ /
i World
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Act
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Legend: [ Network || Feature

@

e Given a sequence of images



Path Following RLAE

http://rilab.snu.ac.kr

4 Memory\ h \“ QObserve
‘ " \ ¢ v n
\ % | World
( = A Act
J ' — a >

Legend: [ Network || Feature

@

e Given a sequence of images and at these images



Path Following RLAE

http://rilab.snu.ac.kr

4 h QObserve
/ \ 5 -.:'.'. = i i - 'I /
N 2\ ] o 4 World
) | | 7Z
| .

Act

_— /)
a "

Legend: [ Network || Feature

__/

e Given a sequence of images and at these images, it abstracts the s
equence into a sequence of memories.
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\ ) ; _3 Network

e A second recurrent network m uses this sequence and the current observa
tion to emit actions that retrace the path.




Path Following
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Legend: [ Network

Feature

e A second recurrent network m uses this sequence to emit actions that retr
ace the path. It also updates the attention location 7).
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Reference
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Active Vision

Embodied Visual Recognition, ICCV 2019
SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency, NeurlPS 2021
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* Humans have the ability to derive strategical moves to gather more information from new viewpoints to
further help the visual recognition.

* Toddlers (4-7 months old) are capable of actively diverting viewpoints to learn about objects. [1]

Input Environment Map Prediction

[1] S. Bambach, D. J. Crandall, L. B. Smith, and C. Yu. Toddler inspired visual object learning. In Advances in Neural Information Processing Systems (NIPS), 2018.



Embodied Visual Recognition RL/ZA P
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* The robot is initialized close to the object (location, gaze direction).

* To perform visual recognition on the occluded object, the agent learns to move, rather than standing still
and hallucinating.

I

I Dresser : : I
: I
: . I ! |
| : I |
| : I I
| I I |
| : I |
[ Prediction : : Prediction Prediction |
1 |
I | | Visual Visual Visual I
I Visual : : Recognition Recognitinn Recognition |
I Recognition : | 1 ¥ I
I
: [ 1 I I
! 1 | Action Policy Action Policy [---===smsameee]se- :
| . . | |
: ! ! !
I | I E I
¥ | | ¥ M ]
! I I Action Action I
: I I ﬁ IIIIIIIIIIII ’ I
| 1 | ' ' r :
| | I

: / \ t=1

—-— o o o Ten o E E EE O EE EE S S S EEE B SN EE B MmN M M BN BN EEE B B EEE S B S S M

(a) Passive Visual Recognition (b) Embodied Visual Recognition



Embodied Visual Recognition

* Based on House3D: a simulator built on top of SUNCG.
* Filter out atypical 3D rooms in House3D, resulting in 550 houses in total.
* 640 x 800 images, extend borders of rendered images by 80 pixels on each side (800 x 960 images)

* Select a subset of object categories: 8 categories out of 80

bed chair desk dresser fridge sofa table washer

total

Train 1687 1009 1333

Val
Test

197
427

122 207
210 330

737
82
172

900
103
207

1742 981
206 144
456 264

551
52
104

8940
1113
2170

RI F (D
=N
Y ‘\_ vy

http://rilab.snu.ac.kr




Embodied Visual Recognition RLZA P
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* The visual recognition network y; = f(by, Iy, I, ..., 1) consists of three components: fyase, fruses fread-
* Firstly, fpqse Uses a CNN to extract feature map y, = f(b,,1,,11, ..., I;).

Xt = foaseUt)

* Secondly, fryse uses ConvGRU to aggregate all the feature map up to ¢,

X; = ffuse(xOr s Xt
* Finally, features and the initial bounding box are used to predict object category, bounding box and mask, y;
= fhead(bo» ft)-

Dresser Washer Washer
onv + MLP Conv + MLP onv + MLP
ROl Pooling ROI Pooling ROI Pooling
ConvGRU ConvGRU —

ConvGR

Conv} Conv Conv

t=1
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* The policy network a;~ m(b,, Iy, 11, ..., I;) consists of three components: {ningnc, T qctEnc) nact}.

Firstly, Timgenc is @ conv-bn-relu-pool encoder for image features. The input concatenates the initial input, current

input, and the mask for visible bounding box of the target obJect Zt I = = Timgenc(Ups Lo, It])

Secondly, T, tgnc €ncodes the last action in each step ¢, Z " = Tetpne (@)

Finally, .+ is a single-layer GRU, which takes action embedding and image embedding to output the final action

im
value, ag~ e (2,7, “Ct])

* > t Rewards: classification accuracy, IOU to measure
Sa’“"“”gT e Sam""”gt - Sa’“p””gt advantage of candidate agent moves.
E Embedding E Embedding E
zero-vector  [MLP MLP MLP
: |I g_GRU, .I T R 1. = AgAccf + AploUP + A JoU™.
Conv + MLP ‘I Conv + MLP ‘I Conv+ MLP Ry =1 — 11,

Used policy gradient with REINFORCE to train the policy
model.

Move Right |




Embodied Visual Recognition RLAE

Input Image RotateLeft

11

i o
NN Rotateleft

i 8

Input Image ight ' j Groundwfth

I [i| & ot | » |__| A |(§L|oundWrth

;

Input'image

RotateRight [ RotateRight
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e “SEAL: Self-supervised Embodied Active Learning using Exploration and 3D
Consistency”, NeurlPS 2021

* The agent can actively choose the views it experiences to maximize perception perfor
mance.

* Perceptual models allow the agent to act in the world and collect data that improve t
he perception models.

* Improved perception models can improve the agent’s policy for interacting with the
world.



SEAL

* Internet Computer Vision

2

1 Karpathy. https.//cs.stanford.edu/people/karpathy/cnnembed/
Li, Johnson, Yeung. http://cs231n.stanford.edu/slides/2017/cs231n_2017 _lecture11.pdf

Semantic Classification
Segmentation + Localization

GRASS, CAT, T

. TREE,SKY y
Object Instance

Detection Segmentation

: . =
DOG, DOG, CAT DOG, DOG, CAT
\e A

RL /2
-/ 1=

http://rilab.snu.ac.kr


http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

SEAL RIL/ [

http://rilab.snu.ac.kr
* Embodied agent

Observation Third-person vie

Goal: Potted Plant

Predicted
Semantic Map




SEAL RLL/A 2
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e Internet vs Embodied Data
Static Internet da__ta
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* Perception-Action Loop

Step 1. Self-
supervised Active
Exploration

Action

Perception

Step 2. Self-
supervised Visual
Learning

We must perceive in order to move, but we must also move in order to perceive
- Gibson (1979)
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Phase 1: Action Phase 2: Perception
Learning active exploration policy Training Mask-RCNN using spatio-temporal label propagation

Exploration Action _ ; Perception
Policy Ae Module

Trained —Traie :
Exploration ) 5 W =%.- 3D Semantic

Mapping
Gainful Curiosity
Reward

3D Semantic Map

3D Semantic Map

oy

Rk £

l

Get Labels

Perception
Module
(Mask RCNN)

Semantic Predictions

_ J J




SEAL

* 3D Semantic Mapping

RGB (1)

Semantic Predictions

Geocentric Voxel (vf«)

i Y :1“\
b 5

L |
i

=N
-/ 1=
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3D Semantic Map (m,_)

!
1.
AN

Point Cloud Semantic scores Point Cloud ' Semantic scores

Egocentric Point Cloud (c/4°) Geocentric Point Cloud(c#*)

Sensor Pose Reading (x,)

3D Semantic Mapping

VT
Aggregation

A 4




SEAL

* 3D Semantic Mapping

3D Semantic Map

\\ 2

%)

B

B coucn

B eottea priant
|

B i

/4 \"\_ D)
RLLA

http://rilab.snu.ac.kr




SEAL

* Phase 1: Learning Action

3D Semantic Map

RL/

http://rilab.snu.ac.kr
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* Phase 2: Learning Perception

(. ) -

~
( Phase 1: Action J { Phase 2: Perception J

Learning active exploration policy Training Mask-RCNN using spatio-temporal label propagation

Sample Trajectories

Exploration Action Perception

: . e Trained
Policy - : Module

Exploration ' | <) ] 3D Semantic
I? 1 Mapping

Gainful Curiosity
Reward

3D Semantic Map

3D Semantlc Map

l -\vl \f‘? /\
Get Labels \ .' 4

Perception
Module
(Mask RCNN)

Semantic Predictions

\_ J U J




SEAL

* Phase 2: Learning Perception

3D Semantic Map

RLLAE

http://rilab.snu.ac.kr
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r- Chair I Fotted Plant [ Toilet

RGB Observation

Mask-RCNN Predictions

Self-Supervised Labels

Semantic Mapping

aD

._- Couch [l Bed

1

i o

3D Semantic Map
| 8y
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Step 1. Self-supervised
Active Exploration

3. Object-Goal
Navigation

Perception Step

Step 2. Self-supervised
Visual Learning

We must perceive in order to move, but we must also move in order to perceive
- Gibson (1979)
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* Results of Object Goal Navigation

Success Rate SPL

Random [0.004 0.004

RGBD + Semantics + RL [1] ?) 0.049
Classical Map + FBE 0.403 0124
___Active Neural SLAM [2] | 1 0.145
: SemExp [3] 0.199
! SemExp + SEAL (Gen.) 0.323
: SemExp + SEAL (Spec.) 0.331

o s
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Point Goal Navigation



Point Goal Navigation
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* In PointNav, an agent is spawned at a random starting position and orientation in an unseen environment
and asked to navigate to target coordinates specified relative to the agent’s start location (‘Go 5m north,
3m west relative to start’). No ground-truth map is available and the agent must only use its sensory input

(an RGB-D camera) to navigate.

Point Goal Nav Task:

Observations
Goal [distance=3.4m, angle=-75"]

Noisy RGB

Noisy Depth

~

Noisy
actuation

-

Photo-realistic 3D scene

M

4

Action | TURN_RIGHT

.'.?"
Your Agent H
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Image Goal Navigation

"Semi-Parametric Topological Memory for Navigation," 2018
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Image Goal Navigation RLZA P
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* "Semi-Parametric Topological Memory for Navigation," 2018
* [t introduces a memory architecture for navigation inspired by landmark-based navigation in
animals.

* Semi-parametric topological memory (SPTM) consists a (non-parametric) graph with nodes
corresponding to locations in the environments and a (parametric) deep network capable of
retrieving nodes from the graph based on observations.

* The SPTM is used as a planning module in a navigation system.
* It is a two-staged method:

» exploration: records the traversal of the environment and build the internal
representation.

» goal-directed navigation: use the internal representation to reach the goal location.



Image Goal Navigation R A2
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Current Semi-parametric topological memory \
observation ( \ Waynoint

observation

o) =
O . —()— -
‘—
Action
Og >

Goal Retrieval Memory Locomotion

network
observation \k network graph ) /

* At each time step T, the agent gets an observation 0; and takes an action a;.
* The interaction is set up in two stages: exploration and goal-directed navigation.

* In the above figure, SPTM acts as a planning module: given the current and goal observations,
it generates a waypoint and the corresponding action.



Image Goal Navigation RLA®
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G )
__ |

Current Semi-parametric topological memory

observation ( - \

Waypoint
observation

Action

Locomotion

network /

Retrieval

Goal network

observation \\

* Memory graph
* The graph is populated based on an exploration sequence provided to the agent.

* Two vertices are connected by an edge in one of two cases: if they correspond to consecutive time s
teps, or if the observations are very close, as judged by the retrieval network .

* The network R estimates the similarity of two observations (04, 0,) trained on a set of environment
s in self-supervised manner.




Image Goal Navigation RLA®
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Current
observation

: Waypoint
' | observation

_ Goal
observation

B

(a) Localizato | (b) Planning (c) Waypoint selection

e The retrieval network R localizes in the graph the vertices V% and ,corresponding to the c

urrent agent's observation O and the goal observation ,respectively.



Image Goal Navigation RLA®
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Current

: : Waypoint
observation ’} observation
Goal

observation

(a) Localization (b) Planning (c) Waypoint selection

e The shortest path on the graph between these vertices is computed (red arrows).

e Dijkstra's algorithm is used in the experiments.
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Current

: g : Waypoint 3
observation (" é i i D : / \ | observation
Goal & J

observation

(a) Localization (b) Planning (c) Waypoint selection

e The waypoint vertex vW) vellow) is selected as the vertex in the shortest path that is furthest f

or the agent's vertex V% but can still be confidently reached by the agent.

e The output of the SPTM is the corresponding waypoint observation 0" = Op,w .
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(a) Maze (b) Agent’s observation ¥ (c) Waypoint observation | (d) Goal observation

e A waypoint observation is produced by SPTM given agent's observation (b) and goal observatio
n (d).
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e Locomotion network L:

e The network L is trained to navigate toward target observations near the agent.

e The network maps a pair (01, 02) ,which consists of a current and a goal observations, in
to action probabilities.
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Object Goal Navigation

PONI: Potential Functions for ObjectGoal Navigation with Interaction-free Learning, CVPR 2022
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* In ObjectNav, an agent is initialized at a random starting position and orientation in an unseen environment and asked
to find an instance of an object category (find a chair’) by navigating to it. A map of the environment is not provided

and the agent must only use its sensory input to navigate.

* The agent is equipped with an RGB-D camera and a (noiseless) GPS+Compass sensor. GPS+Compass sensor provides
the agent’s current location and orientation information relative to the start of the episode. We attempt to match the
camera specification (field of view, resolution) in simulation to the Azure Kinect camera, but this task does not involve

any injected sensing noise.

Object Goal Nav Task:

4 Observations = &

Goal Find stool

RGB

Photo-realistic 3D scene

Depth
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Compass
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Action | TURN_LEFT

Your Agent g
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* “PONI: Potential Functions for ObjectGoal Navigation with Interaction-free Learning”,
CVPR 2022
* Learning to infer “where to look” without any interactions.
e Potential Function
* Defined at the frontiers of a 2D top-down semantic map.
e Estimated from a partially filled semantic map
* Interaction free learning from dataset
* Qutperforms SOTA on Gibson with 7x lower training cost.
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Potential Function : Where to look for finding goal object o?

* The potentials are only defined at the map frontiers.

* Area Potential Function U
 Area potential U#(f) at a frontier f
: the amount of free-space left to explore beyond f

* A guide for efficient exploration, helps find unexplored areas.

* This function is critical when the semantic map is not informative.

* Object Potential Function U{
* A guide for efficient object search, helps find the object o

e This is critical to perform semantic reasoning when the semantic
is sufficiently informative.
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* Area Potential Function
» Area potential U#(f) at a frontier f
: the amount of free-space left to explore beyond f
: navigable cells which are unexplored in the partial semantic map.
* How to calculate?
* Group the unexplored free-space cells into connected components C = {cy, ..., ¢, } using OpenCV




Object Goal Navigation RLAR

http://rilab.snu.ac.kr

* Area Potential Function
* A component cis associated with frontier f only if at least one pixel in c is an 8-connected neighbor of
some pixel in f .
» For each frontier f, area potential U (f) = sum of areas of connected components associated with f

and normalize.
F ¥
. i
gp:l ¢
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* Area Potential Function
* A component cis associated with frontier f only if at least one pixel in c is an 8-connected neighbor of

some pixel in f.
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For each frontier f, area potential U (f) = sum of areas of connected components associated with f
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 Potential Function Network

* Object Potential Function
* Geodesic distance between a frontier location x, Object category o;

dg (Otl X)

U? (0, x) = max(1 — 0.0) dmax = 10m

dmax

If o, = [ chair
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* Potential Function Network
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* Object potential decoder outputs N-channel map : (the number of object categories)
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* Long-term Goal Sampling

* Linearly combine the area and object potentials to obtain overall potential.

Us=aUl+ (1 —a)U?

« a = 0.5 is decided via validation experiments.

e Zero-out U; at all explored map locations except frontiers.

* “Since the map frontiers can be noisy during navigation, we retain the
predictions from the unexplored locations, providing the model some
flexibility in deciding the frontier boundaries.”
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* Analytical Local Policy

Obstacle * Compute the shortest path using Fast Marching Method

* Takes deterministic actions along the path

* This was found to be as effective as a learned policy (e.g. ANS)
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e Learning without any environmental interactions!

e Potential function network Ty f

* A dataset of semantic maps that are pre-computed
* Using Semantic MapNet
* Data Tuple Generation

T—-—D A A * ]-. d
& .I i — s o Lrl
P < }
; nz S o

[,., :3‘ | é-u tn' Ay ' |/

‘: (:r?:‘ ;:'j T 7,'1 I? '\_‘F:d " ";-; i o—“-_1' > e gy
el 0 g ey { [

g @ o  TH=N &

C. H . .
m®: complete semantic map mP: partial semantic map



Object Goal Navigation RL /2P

http://rilab.snu.ac.kr
* Training
e Loss function for Potential function network Ty f

F : a set of frontier pixels
N : the number of object categories
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Figure 5. Qualitative example of navigation using potential functions. We visualize parts of an ObjectNav episode on Gibson (val),
starting from T=1 until the agent finds the goal object (bed). For each step, we show the egocentric RGB view, the predicted semantic map,
object and area potential functions. We indicate the maximum location that the agent navigates to using a blue cross on the PF map(s)
responsible for the maximum. At the episode start (T=1 to 65), the agent is guided by the area PF which is high near frontiers leading to
unexplored areas, allowing it to explore and gather information. The object PF plays a limited role here. After having gathered information,
the model predicts higher object PF near the bedroom entrance at T=72, while the area PF remains high at multiple frontiers unrelated to
the object location. The agent uses the new signal from the object PF to enter the bedroom and find the bed at T=84. This highlights the
value of the two potential functions and how they are combined to perform ObjectNav. Please see supplementary for more examples.
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Vision and Language Navigation
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* It requires an autonomous agent to follow a natural
language navigation instruction to navigate to a goal
location in a previously unseen real-world building.

* The challenge is situated in the Matterport3D Simulator -- a
large-scale reinforcement learning environment based on
panoramic images from the Matterport3D dataset.

* The instructions and trajectories comprise the Room-to-
Room (R2R) natural language navigation dataset.

Leave the bedroom, and enter the kitchen. Walk
forward, and take a left at the couch. Stop in
front of the window.


https://github.com/peteanderson80/Matterport3DSimulator
https://niessner.github.io/Matterport/

T AF
TSGM RL/A P

http://rilab.snu.ac.kr

* Visual navigation has two branches

1. Metric map-based
* Pros: Exact
* Cons: Computationally expensive

2. Topological-memory-based
* Pros: Robust to noise
* Cons: Less accurate

* Topoloigical Semantic Graph memory (TSGM)
* Leverages a semantic navigation like human
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* Learning to navigate using context of objects

* Visual navigation methods simply encode the whole image

* Object contexts provide semantic information when there is the same object with
different configurations

|

A cup for drinking A cup for toothbrushing

e Rather than image-based memory, utilizing object-context memory can help an agent
to achieve the target task
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I got lost! How can I go back?
Let’s recall the objects I saw.

Okay. Turn right!
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* Graph Connection
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* Cross Graph Mixer

I-th layer
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_ Attention scores Attention scores
current observation about current observation  about target observation

Qoo fii 2

target observation
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Table 2: Comparison of our model (TSGM) with baselines on Image-Goal Navigation on Gibson
Test Episodes. We report average Success rate and SPL @ 1m.

Path Type | Method | Easy Medium Hard | Overall

| | Success SPL  Success SPL  Success SPL | Success SPL

RL {(10M step) 10.5 6.7 15.1 15.1 11.7 108 13.4 0.9

RL (extra data + 100M steps) 432 385 Jhd 348 74 T2 20 268

BC w/ ResNet + Metric Map 248 239 1.5 11.2 1.3 1.2 12.5 12.1

Straight BC w/ ResMNet + GRU 39 334 176 17.40 0.1 39 9.5 188
MNRNS [33] 680 61.6 491 445 23.8 18.2 469 414

NRNS [33] (pano) a7.1 578 524 41.2 326 224 0.7 405

VGM [20] Bl.D 544 820 699 67.3 544 T6.7T 596

TSGM (Ours) 944 921 926 843 T0.3 628 85.7 TY98

RL (10M step) 7.5 32 9.5 7.1 55 4.7 1.5 5.0

RL {extra data + 100M steps) 222 16.5 20.7 18.5 4.2 37 15.7 12.9

BC w/ ResNet + Metric Map 3.1 2.5 0.8 0.7 02 0.1 1.3 1.1

Curved BC w/ ResMNet + GRU 36 2.8 1.1 0.9 0.5 0.3 1.7 1.3
MRNS [33] 35 183 239 120 12.5 (i 243 124

NRNS [33] (pano) 31.7 13.00 290 136 19.2 104 26.6 12.3

WGM [20] gl 455 T8.8 595 0622 469 4.0 506

TSGM (Ours) 93.6 91.0 807 TIR 64.2  55.0 825 T4.1
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On Richard Feynman’s problem solving

* The Feynman problem solving algorithm:

1. Write down the problem
2. Think very, very hard

3. Write down the solution
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* Keep up with recent researches
* Google scholar keyword alerts
* Paper study with colleagues

* Organize research materials
* EndNote (paper)
* Notion (research journal)
* Slack (experimental results)
* Github (code)
* PPT (organize read papers in ppt)

* Visualize your work
* Wandb / Tensorboard (training)
* ipython notebook (simple test/visualize)
* at least plt.show()



Thank you for listening
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* Exploration

* Mid-level visual representations improve generalization and sample efficiency for learning active tasks, CoRL 2019
e SplitNet: Sim2Sim and Task2Task Transfer for Embodied Visual Navigation, ICCV 2019

* Learning Exploration Policies for Navigation, ICLR 2019

* Learning To Explore Using Active Neural SLAM, ICLR 2020

* Active Vision
* Viewpoint Selection for Visual Failure Detection, IROS 2017
* A dataset for developing and benchmarking active vision, ICRA 2017
e Geometry-aware recurrent neural networks for active visual recognition, NIPS 2018
* Learning to look around: Intelligently exploring unseen environments for unknown tasks, CVPR 2018
* Embodied Visual Recognition, ICCV 2019
* SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency, NeurlPS 2021
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* Point Goal Navigation
* A Behavioral Approach to Visual Navigation with Graph Localization Networks, RSS 2019
* Learning Exploration Policies for Navigation, ICLR 2019.
* Sparse Graphical Memory for Robust Planning, arXiv 2020
* Active Neural Localization, ICLR 2018
* Active Neural SLAM, ICLR 2020

* Image Goal Navigation
* Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning, ICRA 2017
* Semi-Parametric Topological Memory for Navigation, ICLR 2018
* Sparse Graphical Memory for Robust Planning, arXiv 2020

* Object Goal Navigation
e Auxiliary Tasks and Exploration Enable ObjectNav, ICCV 2021
* Treasure Hunt Data Augmentation for Semantic Navigation, ICCV 2021
* Object Goal Navigation using Goal-Oriented Semantic Exploration, NeurlPS 2020
* Learning to Map for Active Semantic Goal Navigation, ICLR 2022
* PONI: Potential Functions for ObjectGoal Navigation with Interaction-free Learning, CVPR 2022
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* Visual Language Navigation

* Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation, ICRA 2021
* Waypoint Models for Instruction-guided Navigation in Continuous Environments, ICCV 2021
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* Metric-Map Memory
* Learning To Explore Using Active Neural SLAM. ICLR, 2020.
* Object Goal Navigation using Goal-oriented Semantic Exploration. NeurlPS, 2020.
* Semantic MapNet: Building Allocentric Semantic Maps and Representations from Egocentric Views. AAAI, 2021.

* Topological Memory
* Semi-parametric Topological Memory for Navigation, ICLR, 2018.
* Neural Topological SLAM for Visual Navigation, CVPR, 2020.
* Hallucinative Topological Memory for Zero-Shot Visual Planning, ICML, 2020.
* Topological Planning with Transformers for Vision-and-Language Navigation, CVPR, 2021.
* Pose Invariant Topological Memory for Visual Navigation, ICCV, 2021.
* Visual Graph Memory With Unsupervised Representation for Visual Navigation, ICCV, 2021.
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